Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight

In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.

[1]  H. Karten,et al.  Morphology, projection pattern, and neurochemical identity of Cajal's “centrifugal neurons”: The cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus) , 2014, The Journal of comparative neurology.

[2]  S. Hunt,et al.  Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study , 1980, The Journal of comparative neurology.

[3]  J. Bower,et al.  Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat? , 1997, Progress in brain research.

[4]  K. Hoffmann,et al.  Direction specific neurons in the pretectum of the frog (Rana esculenta) , 1980, Journal of comparative physiology.

[5]  B. J. Frost,et al.  The processing of object and self-motion in the tectofugal and accessory optic pathways of birds , 1990, Vision Research.

[6]  Paul D. Gamlin,et al.  Retinal projections to the pretectum in the pigeon (columba livia) , 1988, The Journal of comparative neurology.

[7]  Brie A. Linkenhoker,et al.  Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine , 1997, The Journal of comparative neurology.

[8]  M. Paulin The role of the cerebellum in motor control and perception. , 1993, Brain, behavior and evolution.

[9]  S. E. Brauth,et al.  Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia) , 2004, Experimental Brain Research.

[10]  Stephen Grossberg,et al.  A neural model of visually guided steering, obstacle avoidance, and route selection. , 2009, Journal of experimental psychology. Human perception and performance.

[11]  Roslyn Dakin,et al.  Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity , 2016, Proceedings of the National Academy of Sciences.

[12]  Brie A. Linkenhoker,et al.  Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons , 1998, Neuroscience.

[13]  B. Frost,et al.  Purkinje cells in the vestibulocerebellum of the pigeon respond best to either translational or rotational wholefield visual motion , 2004, Experimental Brain Research.

[14]  J. Mpodozis,et al.  Microconnectomics of the pretectum and ventral thalamus in the chicken (Gallus gallus) , 2016, The Journal of comparative neurology.

[15]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) III. Role of the nucleus ectomamillaris (nEM): Interactions in the accessory optic system (AOS) , 2004, Experimental Brain Research.

[16]  D. Sherry,et al.  The hippocampal complex of food-storing birds. , 1989, Brain, behavior and evolution.

[17]  Masao Ito Cerebellar learning in the vestibulo–ocular reflex , 1998, Trends in Cognitive Sciences.

[18]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[19]  David J. Graham,et al.  Differential projections from the vestibular nuclei to the flocculus and uvula‐nodulus in pigeons (Columba livia) , 2008, The Journal of comparative neurology.

[20]  Andrew A Biewener,et al.  Optic flow stabilizes flight in ruby-throated hummingbirds , 2016, Journal of Experimental Biology.

[21]  M. Konishi Coding of auditory space. , 2003, Annual review of neuroscience.

[22]  P. R. Green,et al.  Optic flow-field variables trigger landing in hawk but not in pigeons , 1990, Naturwissenschaften.

[23]  O. Güntürkün,et al.  Tectal mosaic: Organization of the descending tectal projections in comparison to the ascending tectofugal pathway in the pigeon , 2004, The Journal of comparative neurology.

[24]  J. Simpson,et al.  Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. , 1988, Journal of neurophysiology.

[25]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[26]  T X Fan,et al.  Visual responses and connectivity in the turtle pretectum. , 1995, Journal of neurophysiology.

[27]  J. Jansen,et al.  Experimental demonstration of a pontine homologue in birds , 1950 .

[28]  N. Crowder,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): III. Projections of the translation zones of the ventral uvula and nodulus , 2003, The Journal of comparative neurology.

[29]  D R Wylie,et al.  Projections from the nucleus of the basal optic root and nucleus lentiformis mesencephali to the inferior olive in pigeons (Columba livia) , 2001, The Journal of comparative neurology.

[30]  R Llinás,et al.  Interaction experiments on the responses evoked in Purkinje cells by climbing fibres , 1966, The Journal of physiology.

[31]  Daniel S. Hoops,et al.  Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.) , 2017, Brain, Behavior and Evolution.

[32]  Jan Voogd,et al.  Functional and anatomical organization of floccular zones: A preserved feature in vertebrates , 2004, The Journal of comparative neurology.

[33]  N. Lesica,et al.  Population Coding of Interaural Time Differences in Gerbils and Barn Owls , 2010, The Journal of Neuroscience.

[34]  K. Nakayama,et al.  Single visual neurons code opposing motion independent of direction. , 1983, Science.

[35]  P. Clarke,et al.  Some visual and other connections to the cerebellum of the pigeon , 1977, The Journal of comparative neurology.

[36]  Douglas R Wylie,et al.  Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum , 2010, The Journal of comparative neurology.

[37]  J. Pakan,et al.  Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia) , 2006, The Journal of comparative neurology.

[38]  Douglas L. Altshuler,et al.  Neurons Responsive to Global Visual Motion Have Unique Tuning Properties in Hummingbirds , 2017, Current Biology.

[39]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[40]  J. Gibson The visual perception of objective motion and subjective movement. , 1994, Psychological review.

[41]  F. Lui,et al.  The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. , 2006, Progress in brain research.

[42]  Martin Egelhaaf,et al.  Gaze Strategy in the Free Flying Zebra Finch (Taeniopygia guttata) , 2008, PloS one.

[43]  A. Hardenberg,et al.  DISENTANGLING EVOLUTIONARY CAUSE‐EFFECT RELATIONSHIPS WITH PHYLOGENETIC CONFIRMATORY PATH ANALYSIS , 2013, Evolution; international journal of organic evolution.

[44]  B. Frost,et al.  Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow. , 1993, Journal of neurophysiology.

[45]  Jan Voogd,et al.  Oculomotor cerebellum. , 2006, Progress in brain research.

[46]  J. Wallman,et al.  Functional postnatal changes in avian brain regions responsive to retinal slip: a 2-deoxy-D-glucose study , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  E. Fernández-Juricic,et al.  Mosaic and Concerted Evolution in the Visual System of Birds , 2014, PloS one.

[48]  C. Duffy,et al.  Cortical neuronal responses to optic flow are shaped by visual strategies for steering. , 2008, Cerebral cortex.

[49]  Douglas R Wylie,et al.  Zebrin-Immunopositive and -Immunonegative Stripe Pairs Represent Functional Units in the Pigeon Vestibulocerebellum , 2012, The Journal of Neuroscience.

[50]  B. Frost,et al.  Motion parallax processing in pigeon (Columba livia) pretectal neurons , 2013, The European journal of neuroscience.

[51]  Sankar Chatterjee,et al.  Neuroanatomy of flying reptiles and implications for flight, posture and behaviour , 2003, Nature.

[52]  H. Gioanni,et al.  Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columbia livia) , 2004, Experimental Brain Research.

[53]  R. Eager,et al.  The Comparative Anatomy and Histology of the Cerebellum from Myxinoids Through Birds , 1967, The Yale Journal of Biology and Medicine.

[54]  Lee Dn,et al.  The optic flow field: the foundation of vision. , 1980 .

[55]  J. Pakan,et al.  Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections , 2006, The Journal of comparative neurology.

[56]  D. R. Wylie,et al.  Comparative Morphology of the Avian Cerebellum: II. Size of Folia , 2006, Brain, Behavior and Evolution.

[57]  D. N. Lee,et al.  Aerial docking by hummingbirds , 1991, Naturwissenschaften.

[58]  R. Nudds,et al.  Avian Cerebellar Floccular Fossa Size Is Not a Proxy for Flying Ability in Birds , 2013, PloS one.

[59]  J. Wallman,et al.  Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. , 1985, Brain, behavior and evolution.

[60]  M. Ibbotson Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds , 2017, Current Biology.

[61]  J. Wallman,et al.  Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (accessory optic system) in chickens , 2004, Experimental Brain Research.

[62]  I. Winship,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fiber input to the flocculus , 2003, The Journal of comparative neurology.

[63]  J. Voogd,et al.  Topographical Aspects of the Olivocerebellar System in the Pigeon , 1989 .

[64]  H. Collewijn Direction-selective units in the rabbit's nucleus of the optic tract , 1975, Brain Research.

[65]  David N. Lee,et al.  VISUAL CONTROL OF VELOCITY OF APPROACH BY PIGEONS WHEN LANDING , 1993 .

[66]  G. Striedter Principles of brain evolution. , 2005 .

[67]  D. N. Lee The optic flow field: the foundation of vision. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  B. Frost,et al.  Common reference frame for neural coding of translational and rotational optic flow , 1998, Nature.

[69]  D. Cohen,et al.  Projections of the retinorecipient pretectal nuclei in the pigeon (columba livia) , 1988, The Journal of comparative neurology.

[70]  David N. Lee,et al.  Plummeting gannets: a paradigm of ecological optics , 1981, Nature.

[71]  B. Frost,et al.  Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3-dimensional reference frame of rotation neurons in the flocculus. , 1993, Journal of neurophysiology.

[72]  伊藤 正男 The cerebellum and neural control , 1984 .

[73]  I. Winship,et al.  Spatiotemporal tuning of optic flow inputs to the vestibulocerebellum in pigeons: differences between mossy and climbing fiber pathways. , 2005, Journal of neurophysiology.

[74]  J. Voogd,et al.  Re-examination of the ponto-cerebellar projection in the adult white leghorn (Gallus domesticus). , 1975, Acta morphologica Neerlando-Scandinavica.

[75]  Henrik Mouritsen,et al.  Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin , 2008, PloS one.

[76]  S. Hunt,et al.  Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow , 1976, The Journal of comparative neurology.

[77]  M. Dawson,et al.  Temporal frequency and velocity-like tuning in the pigeon accessory optic system. , 2003, Journal of neurophysiology.

[78]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) II. Role of the pretectal nucleus of the accessory optic system (AOS) , 2004, Experimental Brain Research.

[79]  E. Marg THE ACCESSORY OPTIC SYSTEM * , 1964 .

[80]  Mandyam V. Srinivasan,et al.  Direct Evidence for Vision-based Control of Flight Speed in Budgerigars , 2015, Scientific Reports.

[81]  D. R. Wylie,et al.  Neural specialization for hovering in hummingbirds: Hypertrophy of the pretectal nucleus lentiformis mesencephali , 2007, The Journal of comparative neurology.

[82]  H. Karten,et al.  A simple method to microinject solid neural tracers into deep structures of the brain , 2001, Journal of Neuroscience Methods.

[83]  S. Hunt,et al.  Optokinetic nystagmus and the accessory optic system of pigeon and turtle. , 1979, Brain, behavior and evolution.

[84]  B. J. Frost,et al.  Visual response characteristics of neurons in nucleus of basal optic root of pigeons , 2004, Experimental Brain Research.

[85]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[86]  J. Pakan,et al.  The optic tectum of birds: mapping our way to understanding visual processing. , 2009, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[87]  B. J. Frost,et al.  The visual response properties of neurons in the nucleus of the basal optic root of the pigeon: a quantitative analysis , 2004, Experimental Brain Research.

[88]  B. Frost,et al.  The pigeon optokinetic system: Visual input in extraocular muscle coordinates , 1996, Visual Neuroscience.

[89]  Mandyam V. Srinivasan,et al.  Optic Flow Cues Guide Flight in Birds , 2011, Current Biology.

[90]  Benjamin Goller,et al.  Hummingbirds control hovering flight by stabilizing visual motion , 2014, Proceedings of the National Academy of Sciences.

[91]  D. R. Wylie,et al.  Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. , 2000, Journal of neurophysiology.