Multiscale Visualization and Exploration of Large Bipartite Graphs

A bipartite graph is a powerful abstraction for modeling relationships between two collections. Visualizations of bipartite graphs allow users to understand the mutual relationships between the elements in the two collections, e.g., by identifying clusters of similarly connected elements. However, commonly‐used visual representations do not scale for the analysis of large bipartite graphs containing tens of millions of vertices, often resorting to an a‐priori clustering of the sets. To address this issue, we present the Who's‐Active‐On‐What‐Visualization (WAOW‐Vis) that allows for multiscale exploration of a bipartite social‐network without imposing an a‐priori clustering. To this end, we propose to treat a bipartite graph as a high‐dimensional space and we create the WAOW‐Vis adapting the multiscale dimensionality‐reduction technique HSNE. The application of HSNE for bipartite graph requires several modifications that form the contributions of this work. Given the nature of the problem, a set‐based similarity is proposed. For efficient and scalable computations, we use compressed bitmaps to represent sets and we present a novel space partitioning tree to efficiently compute similarities; the Sets Intersection Tree. Finally, we validate WAOW‐Vis on several datasets connecting Twitter‐users and ‐streams in different domains: news, computer science and politics. We show how WAOW‐Vis is particularly effective in identifying hierarchies of communities among social‐media users.

[1]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Michael Burch,et al.  BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data , 2011, ISVC.

[3]  Jean-Daniel Fekete,et al.  Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis , 2016, ArXiv.

[4]  Nancy Argüelles,et al.  Author ' s , 2008 .

[5]  Elmar Eisemann,et al.  Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.

[6]  John T. Stasko,et al.  Interactive visual co-cluster analysis of bipartite graphs , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[7]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  Walter Didimo,et al.  Visual Analysis of Large Graphs Using (X,Y)-Clustering and Hybrid Visualizations , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Rosane Minghim,et al.  Multidimensional Projections for Visual Analysis of Social Networks , 2012, Journal of Computer Science and Technology.

[10]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[11]  Michael Garland,et al.  On the Visualization of Social and other Scale-Free Networks , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[13]  A. H. Robinson,et al.  Results of a prototype television bandwidth compression scheme , 1967 .

[14]  Maxime Dumas,et al.  Alertwheel: radial bipartite graph visualization applied to intrusion detection system alerts , 2012, IEEE Network.

[15]  Roberto Tamassia,et al.  Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its Applications) , 2007 .

[16]  Boudewijn P. F. Lelieveldt,et al.  CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis , 2018, IEEE Transactions on Visualization and Computer Graphics.

[17]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[18]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[19]  Pierre Dragicevic,et al.  GeneaQuilts: A System for Exploring Large Genealogies , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Charles J. Geyer,et al.  Introduction to Markov Chain Monte Carlo , 2011 .

[21]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[22]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[24]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Elmar Eisemann,et al.  Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.

[26]  Niklas Elmqvist,et al.  Visual Analytics for Multimodal Social Network Analysis: A Design Study with Social Scientists , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  M. Sheelagh T. Carpendale,et al.  VisLink: Revealing Relationships Amongst Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Ulrik Brandes,et al.  Experiments on Graph Clustering Algorithms , 2003, ESA.

[29]  Jean-Daniel Fekete,et al.  Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.

[30]  Zhen Li,et al.  Understanding Hidden Memories of Recurrent Neural Networks , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[31]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[32]  Nicolai Schipper Jespersen,et al.  An Introduction to Markov Chain Monte Carlo , 2010 .

[33]  Marc Streit,et al.  Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[35]  Sampsa Hautaniemi,et al.  Biclustering Methods: Biological Relevance and Application in Gene Expression Analysis , 2014, PloS one.

[36]  Jesús S. Aguilar-Ruiz,et al.  Biclustering on expression data: A review , 2015, J. Biomed. Informatics.

[37]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[38]  Susan T. Dumais,et al.  PivotPaths: Strolling through Faceted Information Spaces , 2012, IEEE Transactions on Visualization and Computer Graphics.

[39]  Hong Zhou,et al.  Edge bundling in information visualization , 2013 .

[40]  Heidrun Schumann,et al.  A Survey of Multi-faceted Graph Visualization , 2015, EuroVis.

[41]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[42]  Owen Kaser,et al.  Consistently faster and smaller compressed bitmaps with Roaring , 2016, Softw. Pract. Exp..

[43]  R. Kelly Garrett,et al.  Echo chambers online?: Politically motivated selective exposure among Internet news users , 2009, J. Comput. Mediat. Commun..

[44]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.