Fractional Optimal Control Problems with Several State and Control Variables

In many applications, fractional derivatives provide better descriptions of the behavior of dynamic systems than other techniques. For this reason, fractional calculus has been used to analyze systems having noninteger order dynamics and to solve fractional optimal control problems. In this study, we describe a formulation for fractional optimal control problems defined in multi-dimensions. We consider the case where the dimensions of the state and control variables are different from each other. Riemann—Liouville fractional derivatives are used to formulate the problem. The fractional differential equations involving the state and control variables are solved using Grünwald—Letnikov approximation. The performance of the formulation is shown using an example.

[1]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[2]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[6]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[7]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[8]  K. Tas,et al.  Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.

[9]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[10]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[11]  Delfim F. M. Torres,et al.  Necessary Optimality Conditions for Fractional Action-Like Problems with Intrinsic and Observer Times , 2007, 0712.0152.

[12]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[13]  O. P. Agrawal,et al.  A New Lagrangian and a New Lagrange Equation of Motion for Fractionally Damped Systems , 2001 .

[14]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[15]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[16]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[17]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[18]  Delfim F. M. Torres,et al.  Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem , 2007, 0712.1844.

[19]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[20]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[21]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[22]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[23]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[24]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[25]  Delfim F. M. Torres,et al.  Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times , 2007, 0711.0645.

[26]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .

[27]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[28]  Christophe Tricaud,et al.  Solving Fractional Order Optimal Control Problems in RIOTS 95-A General-Purpose Optimal Control Problems Solver ⋆ , 2008 .