Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid
暂无分享,去创建一个
[1] C. M. Elliott,et al. On the Cahn-Hilliard equation with degenerate mobility , 1996 .
[2] Charles M. Elliott,et al. The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.
[3] M. Giaquinta,et al. Regularity results for some classes of higher order non linear elliptic systems. , 1979 .
[4] H. Garcke. On a Cahn-Hilliard model for phase separation with elastic misfit , 2005 .
[5] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[6] J. Escher,et al. The surface diffusion flow for immersed hypersurfaces , 1998 .
[7] Unther Gr¨un. ON THE CONVERGENCE OF ENTROPY CONSISTENT SCHEMES FOR LUBRICATION TYPE EQUATIONS IN MULTIPLE SPACE DIMENSIONS , 2000 .
[8] Charles M. Elliott,et al. The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.
[9] M. J. D. Powell,et al. on The state of the art in numerical analysis , 1987 .
[10] L. Gray,et al. Effects of mechanical stress on electromigration-driven transgranular void dynamics in passivated metallic thin films , 1998 .
[11] Harald Garcke,et al. On Cahn—Hilliard systems with elasticity , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] Martin Rumpf,et al. Nonnegativity preserving convergent schemes for the thin film equation , 2000, Numerische Mathematik.
[13] Harald Garcke,et al. On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .
[14] Zhigang Suo,et al. A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion , 1997 .
[15] P. Grisvard,et al. Singularités en elasticité , 1989 .
[16] Harald Garcke,et al. Finite element approximation of a fourth order nonlinear degenerate parabolic equation , 1998, Numerische Mathematik.
[17] W. Tiller,et al. Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion , 1972 .
[18] Andrea L. Bertozzi,et al. Positivity-Preserving Numerical Schemes for Lubrication-Type Equations , 1999, SIAM J. Numer. Anal..
[19] Martin Costabel,et al. Fast semi-analytic computation of elastic edge singularities , 2001 .
[20] Harald Garcke,et al. A phase field model for the electromigration of intergranular voids , 2007 .
[21] J. Fournier,et al. Cone conditions and properties of Sobolev spaces , 1977 .
[22] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[23] Morton E. Gurtin,et al. Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .
[24] K. Kassner,et al. Phase-field modeling of stress-induced instabilities. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Davis,et al. Morphological instability in epitaxially strained dislocation-free solid films. , 1991, Physical review letters.
[26] John W. Barrett,et al. Convergence of a finite‐element approximation of surfactant spreading on a thin film in the presence of van der Waals forces , 2004 .
[27] Ashish Kumar,et al. Diffuse interface model for electromigration and stress voiding , 2000 .
[28] Perry H Leo,et al. A diffuse interface model for microstructural evolution in elastically stressed solids , 1998 .
[29] Harald Garcke,et al. Finite Element Approximation of Surfactant Spreading on a Thin Film , 2003, SIAM J. Numer. Anal..
[30] J. Seif. On the Green’s function for the biharmonic equation in an infinite wedge , 1973 .
[31] Kunibert G. Siebert,et al. ALBERT---Software for scientific computations and applications. , 2001 .
[32] Mikhail A. Grinfel'D,et al. Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt , 1986 .
[33] John W. Barrett,et al. Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.
[34] Harald Garcke,et al. Numerical approximation of the Cahn-Larché equation , 2005, Numerische Mathematik.
[35] Harald Garcke,et al. Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..
[36] Bower,et al. ANALYSIS OF FAILURE MECHANISMS IN THE INTERCONNECT LINES OF MICROELECTRONIC CIRCUITS , 2008 .
[37] John W. Barrett,et al. Finite Element Approximation of a Degenerate Allen-Cahn/Cahn-Hilliard System , 2002, SIAM J. Numer. Anal..
[38] John W. Barrett,et al. Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..
[39] Harald Garcke,et al. The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .
[40] I. Hlavácek,et al. Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .