Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid

We consider a fully practical finite element approximation of the degenerate Cahn-Hilliard equation with elasticity: Find the conserved order parameter, $\theta(x, t)\in [-1, 1]$, and the displacement field, $\underline u(x, t)\in \Bbb R^2$, such that $$\gamma\frac{\partial\theta}{\partial t}=\nabla\cdot (b(\theta)\nabla [-\gamma\Delta\theta + \gamma^{-1}\Psi'(\theta) + \tfrac 12 c' (\theta){\cal C}\underline{\underline{\cal E}}(\underline u) : \underline{\underline{\cal E}}(\underline u)] ),\quad \nabla\cdot (c(\theta){\cal C} \underline{\underline{\cal E}}(\underline{u})) = \underline 0,$$ subject to an initial condition $\theta^0(\cdot)\in [-1,1]$ on $\theta$ and boundary conditions on both equations. Here $\gamma\in\Bbb R_{>0}$ is the interfacial parameter, $\Psi$ is a nonsmooth double well potential, $ \underline{\underline{\cal E}}$ is the symmetric strain tensor, $\cal C$ is the possibly anisotropic elasticity tensor, $c(s) := c_0+ \frac 12 (1- c_0) (1+s)$ with $c_0(\gamma)\in\Bbb R_{>0}$ and $b(s) := 1 s^2$ is the degenerate diffusion mobility. In addition to showing stability bounds for our approximation, we prove convergence, and hence existence of a solution to this nonlinear degenerate parabolic system in two space dimensions. Finally, some numerical experiments are presented.

[1]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[2]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[3]  M. Giaquinta,et al.  Regularity results for some classes of higher order non linear elliptic systems. , 1979 .

[4]  H. Garcke On a Cahn-Hilliard model for phase separation with elastic misfit , 2005 .

[5]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[6]  J. Escher,et al.  The surface diffusion flow for immersed hypersurfaces , 1998 .

[7]  Unther Gr¨un ON THE CONVERGENCE OF ENTROPY CONSISTENT SCHEMES FOR LUBRICATION TYPE EQUATIONS IN MULTIPLE SPACE DIMENSIONS , 2000 .

[8]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[9]  M. J. D. Powell,et al.  on The state of the art in numerical analysis , 1987 .

[10]  L. Gray,et al.  Effects of mechanical stress on electromigration-driven transgranular void dynamics in passivated metallic thin films , 1998 .

[11]  Harald Garcke,et al.  On Cahn—Hilliard systems with elasticity , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Martin Rumpf,et al.  Nonnegativity preserving convergent schemes for the thin film equation , 2000, Numerische Mathematik.

[13]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[14]  Zhigang Suo,et al.  A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion , 1997 .

[15]  P. Grisvard,et al.  Singularités en elasticité , 1989 .

[16]  Harald Garcke,et al.  Finite element approximation of a fourth order nonlinear degenerate parabolic equation , 1998, Numerische Mathematik.

[17]  W. Tiller,et al.  Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion , 1972 .

[18]  Andrea L. Bertozzi,et al.  Positivity-Preserving Numerical Schemes for Lubrication-Type Equations , 1999, SIAM J. Numer. Anal..

[19]  Martin Costabel,et al.  Fast semi-analytic computation of elastic edge singularities , 2001 .

[20]  Harald Garcke,et al.  A phase field model for the electromigration of intergranular voids , 2007 .

[21]  J. Fournier,et al.  Cone conditions and properties of Sobolev spaces , 1977 .

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[24]  K. Kassner,et al.  Phase-field modeling of stress-induced instabilities. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Davis,et al.  Morphological instability in epitaxially strained dislocation-free solid films. , 1991, Physical review letters.

[26]  John W. Barrett,et al.  Convergence of a finite‐element approximation of surfactant spreading on a thin film in the presence of van der Waals forces , 2004 .

[27]  Ashish Kumar,et al.  Diffuse interface model for electromigration and stress voiding , 2000 .

[28]  Perry H Leo,et al.  A diffuse interface model for microstructural evolution in elastically stressed solids , 1998 .

[29]  Harald Garcke,et al.  Finite Element Approximation of Surfactant Spreading on a Thin Film , 2003, SIAM J. Numer. Anal..

[30]  J. Seif On the Green’s function for the biharmonic equation in an infinite wedge , 1973 .

[31]  Kunibert G. Siebert,et al.  ALBERT---Software for scientific computations and applications. , 2001 .

[32]  Mikhail A. Grinfel'D,et al.  Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt , 1986 .

[33]  John W. Barrett,et al.  Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.

[34]  Harald Garcke,et al.  Numerical approximation of the Cahn-Larché equation , 2005, Numerische Mathematik.

[35]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[36]  Bower,et al.  ANALYSIS OF FAILURE MECHANISMS IN THE INTERCONNECT LINES OF MICROELECTRONIC CIRCUITS , 2008 .

[37]  John W. Barrett,et al.  Finite Element Approximation of a Degenerate Allen-Cahn/Cahn-Hilliard System , 2002, SIAM J. Numer. Anal..

[38]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[39]  Harald Garcke,et al.  The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .

[40]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .