Thermal biology of two sympatric gerbil species: The physiological basis of temporal partitioning.

[1]  Dehua Wang,et al.  Implication of metabolomic profiles to wide thermoneutral zone in Mongolian gerbils (Meriones unguiculatus). , 2016, Integrative zoology.

[2]  Dehua Wang,et al.  Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus). , 2016, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[3]  C. D. Antenucci,et al.  Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum. , 2015, Journal of thermal biology.

[4]  W. Liu,et al.  Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus). , 2015, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[5]  J. Speakman,et al.  Lipidomics Reveals Mitochondrial Membrane Remodeling Associated with Acute Thermoregulation in a Rodent with a Wide Thermoneutral Zone , 2014, Lipids.

[6]  M. Araújo,et al.  Thermal tolerances in rodents: species that evolved in cold climates exhibit a wider thermoneutral zone , 2014 .

[7]  C. Gordon Thermal physiology of laboratory mice: Defining thermoneutrality☆ , 2012 .

[8]  Jan Nedergaard,et al.  Nonshivering thermogenesis and its adequate measurement in metabolic studies , 2011, Journal of Experimental Biology.

[9]  L. Krubitzer,et al.  Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number , 2010, The Journal of comparative neurology.

[10]  Dehua Wang,et al.  Physiological and biochemical basis of basal metabolic rates in Brandt's voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). , 2010, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[11]  Hiroshi Sato,et al.  Molecular Phylogeny of the Subfamily Gerbillinae (Muridae, Rodentia) with Emphasis on Species Living in the Xinjiang-Uygur Autonomous Region of China and Based on the Mitochondrial Cytochrome b and Cytochrome c Oxidase Subunit II Genes , 2010, Zoological science.

[12]  Qing-sheng Chi,et al.  Thermal physiology and energetics in male desert hamsters (Phodopus roborovskii) during cold acclimation , 2010, Journal of Comparative Physiology B.

[13]  A. Haim,et al.  Physiological adaptations of small mammals to desert ecosystems. , 2009, Integrative zoology.

[14]  F. Bozinovic,et al.  Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales , 2009 .

[15]  B. Broitman,et al.  Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[16]  B. McNab An analysis of the factors that influence the level and scaling of mammalian BMR. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[17]  Dehua Wang,et al.  Seasonal changes in thermogenesis and body mass in wild Mongolian gerbils (Meriones unguiculatus). , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[18]  F. Bozinovic,et al.  Intraspecific Variability in the Basal Metabolic Rate: Testing the Food Habits Hypothesis , 2007, Physiological and Biochemical Zoology.

[19]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[20]  D. Weinert,et al.  Photic and non-photic effects on the daily activity pattern of Mongolian gerbils , 2007, Physiology & Behavior.

[21]  T. Dayan,et al.  On the role of phylogeny in determining activity patterns of rodents , 2006, Evolutionary Ecology.

[22]  Dehua Wang,et al.  Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Meriones unguiculatus): the roles of short photoperiod and cold , 2005, Journal of Comparative Physiology B.

[23]  Peter M. Kaskan,et al.  Peripheral variability and central constancy in mammalian visual system evolution , 2005, Proceedings of the Royal Society B: Biological Sciences.

[24]  F. Bozinovic,et al.  The Relationship between Diet Quality and Basal Metabolic Rate in Endotherms: Insights from Intraspecific Analysis , 2004, Physiological and Biochemical Zoology.

[25]  Sun Ru-yung,et al.  Relation between average daily metabolic rate and resting metabolic rate of the mongolian gerbil (Meriones unguiculatus) , 1984, Oecologia.

[26]  G. Heldmaier,et al.  Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian hamster , 1982, Journal of comparative physiology.

[27]  Jan Nedergaard,et al.  Brown adipose tissue: function and physiological significance. , 2004, Physiological reviews.

[28]  A. Haim,et al.  Thermoregulatory and osmoregulatory responses to dehydration in the bushy-tailed gerbil Sekeetamys calurus , 2003 .

[29]  Marilyn R. Banta Merriam’s Kangaroo Rats (Dipodomys merriami) Voluntarily Select Temperatures That Conserve Energy Rather than Water , 2003, Physiological and Biochemical Zoology.

[30]  B. McAllan,et al.  Effects of temperature acclimation on maximum heat production, thermal tolerance, and torpor in a marsupial , 2003, Journal of Comparative Physiology B.

[31]  M. Clauss,et al.  The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters , 2003, Oecologia.

[32]  Zuwang Wang,et al.  Nonshivering thermogenesis in four rodent species from Kubuqi desert, Inner Mongolia, China , 2002 .

[33]  James H. Brown,et al.  The Physiological Ecology of Vertebrates: A View from Energetics , 2002 .

[34]  Z. Wang,et al.  Cold adaptive thermogenesis in small mammals from different geographical zones of China. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[35]  T. Dayan,et al.  Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs. , 2001, Journal of thermal biology.

[36]  W. Breed,et al.  A comparative study of sperm production in two species of Australian arid zone rodents (Pseudomys australis, Notomys alexis) with marked differences in testis size. , 2001, Reproduction.

[37]  A. Haim,et al.  HOW DEHYDRATION AFFECTS THE THERMOREGULATORY ANDOSMOREGULATORY ABILITIES OF THE GOLDEN SPINY MOUSEACOMYS RUSSATUS , 2001 .

[38]  A. Haim,et al.  Comparative non-shivering thermogenesis in adjacent populations of the common spiny mouse (Acomys cahirinus) from opposite slopes: the effects of increasing salinity , 2001, Journal of Comparative Physiology B.

[39]  T. Dayan,et al.  POPULATION BIOLOGY AND SPATIAL RELATIONSHIPS OF COEXISTING SPINY MICE (ACOMYS) IN ISRAEL , 2000 .

[40]  Barry G Lovegrove,et al.  The Zoogeography of Mammalian Basal Metabolic Rate , 2000, The American Naturalist.

[41]  J. Weiner Activity Patterns and Metabolism , 2000 .

[42]  Y. Ziv,et al.  Gerbils and Heteromyids — Interspecific Competition and the Spatio-Temporal Niche , 2000 .

[43]  T. Dayan,et al.  The dietary basis for temporal partitioning: food habits of coexisting Acomys species , 1999, Oecologia.

[44]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[45]  T. Garland,et al.  Why Not to Do Two-Species Comparative Studies: Limitations on Inferring Adaptation , 1994, Physiological Zoology.

[46]  I. Izhaki,et al.  The ecological significance of resting metabolic rate and non-shivering thermogenesis for rodents , 1993 .

[47]  Daryl E. Wilson,et al.  Mammal Species of the World: A Taxonomic and Geographic Reference , 1993 .

[48]  Burt P. Kotler,et al.  Interference competition and temporal and habitat partitioning in two gerbil species , 1993 .

[49]  E. Scharrer,et al.  Effect of short‐chain fatty acids on calcium absorption by the rat colon , 1991, Experimental physiology.

[50]  R. Lacy,et al.  Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[51]  J. H. Carothers,et al.  Time as a Niche Difference: The Role of Interference Competition , 1984 .

[52]  Liu Rong-tang THE ECOLOGY OF MIDDAY GERBIL(MERIONES MERIDIANUS PALLAS) , 1984 .

[53]  Z. Abramsky,et al.  Diet of gerbilline rodents in the Israeli desert , 1984 .

[54]  R. Macmillen,et al.  WATER REGULATORY EFFICIENCY IN HETEROMYID RODENTS: A MODEL AND ITS APPLICATION' , 1983 .

[55]  M. P. Hoff,et al.  Activity rhythms in the Mongolian gerbil under natural light conditions , 1982, Physiology & Behavior.

[56]  D. R. Deavers,et al.  A re-examination of the relationship between thermal conductance and body weight in mammals , 1980 .

[57]  T. Schoener The compression hypothesis and temporal resource partitioning. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Shkolnik Diurnal activity in a small desert rodent , 1971, International journal of biometeorology.

[59]  E. Pianka Sympatry of Desert Lizards (Ctenotus) in Western Australia , 1969 .

[60]  Knut Schmidt-Nielsen,et al.  Animal Physiology: Adaptation and Environment , 1985 .

[61]  R. Macarthur,et al.  COMPETITION, HABITAT SELECTION, AND CHARACTER DISPLACEMENT IN A PATCHY ENVIRONMENT. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[62]  F. Ingelfinger,et al.  Water and salt absorption in the human colon. , 1962, The Journal of clinical investigation.