Effect of low-frequency alternating-current electric field parameters on laminar and turbulent flames of CH4/air mixture

[1]  Jinhua Wang,et al.  Turbulent flame structure characteristics of hydrogen enriched natural gas with CO2 dilution , 2020 .

[2]  Jinhua Wang,et al.  Flame dynamics analysis of highly hydrogen-enrichment premixed turbulent combustion , 2020 .

[3]  M. Cha,et al.  Visualization of ionic wind in laminar jet flames , 2017 .

[4]  A. Leipertz,et al.  On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields , 2017 .

[5]  M. Cha,et al.  Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields , 2017 .

[6]  M. Cha,et al.  Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields , 2016 .

[7]  Hao Duan,et al.  Effects of electric field intensity and distribution on flame propagation speed of CH4/O2/N2 flames , 2015 .

[8]  Byung Chul Choi,et al.  Soot Reduction Under DC Electric Fields in Counterflow Non-Premixed Laminar Ethylene Flames , 2014 .

[9]  P. Vervisch,et al.  Modelling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame , 2013 .

[10]  Hairui Yang,et al.  Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames , 2013 .

[11]  N. Syred,et al.  Turbulent Flame Structure of Methane-Hydrogen Mixtures at Elevated Temperature and Pressure , 2013 .

[12]  A. Leipertz,et al.  Transient electric field response of laminar premixed flames , 2013 .

[13]  Xiaoming Wu,et al.  Effects of Direct-Current (DC) Electric Fields on Flame Propagation and Combustion Characteristics of Premixed CH4/O2/N2 Flames , 2012 .

[14]  M. Cha,et al.  Premixed Combustion Under Electric Field in a Constant Volume Chamber , 2012, IEEE Transactions on Plasma Science.

[15]  Min Kuk Kim,et al.  Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect , 2012 .

[16]  A. Leipertz,et al.  Study of the influence of electric fields on flames using planar LIF and PIV techniques , 2011 .

[17]  D. Bradley,et al.  Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa , 2011 .

[18]  B. Rubinsky,et al.  Endovascular nonthermal irreversible electroporation: a finite element analysis. , 2010, Journal of biomechanical engineering.

[19]  S. Chung,et al.  Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow , 2010 .

[20]  H. Nijmeijer,et al.  The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames , 2009 .

[21]  D. Bell,et al.  Electrorheology Leads to Efficient Combustion , 2008 .

[22]  K. Lee,et al.  An experimental study on laminar CH4/O2/N2 premixed flames under an electric field , 2008 .

[23]  M. Cha,et al.  Effect of electric fields on the propagation speed of tribrachial flames in coflow jets , 2008 .

[24]  B. Ganguly,et al.  Electrical control of the thermodiffusive instability in premixed propane–air flames , 2007 .

[25]  Zuo-hua Huang,et al.  Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures , 2006 .

[26]  A. Leipertz,et al.  The influence of pressure on the control of premixed turbulent flames using an electric field , 2005 .

[27]  M. Haq,et al.  Turbulent burning velocity, burned gas distribution, and associated flame surface definition , 2003 .

[28]  F. B. Carleton,et al.  The effect of nonsteady electric fields on sooting flames , 1989 .