Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients
暂无分享,去创建一个
[1] Beppo Levi,et al. Sul principio di dirichlet , 1906 .
[2] M. Fréchet. Les dimensions d'un ensemble abstrait , 1910 .
[3] H. Rademacher. Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .
[4] S. Banach,et al. Théorie des opérations linéaires , 1932 .
[5] E. J. McShane,et al. Extension of range of functions , 1934 .
[6] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .
[7] C. Kuratowski. Quelques problèmes concernant les espaces métriques non-séparables , 1935 .
[8] J. A. Clarkson. Uniformly convex spaces , 1936 .
[9] S. Sobolev. On a theorem in functional analysis , 1938 .
[10] S. Ulam,et al. On the Existence of a Measure Invariant Under a Transformation , 1939 .
[11] R. Richardson. The International Congress of Mathematicians , 1932, Science.
[12] M. Day. Reflexive Banach spaces not isomorphic to uniformly convex spaces , 1941 .
[13] Richard Courant,et al. Studies and Essays presented to R Courant on his 60th Birthday, January 8, 1948 , 1948, Nature.
[14] E. J. McShane. Linear functionals on certain Banach spaces , 1950 .
[15] L. Ahlfors,et al. Conformal invariants and function-theoretic null-sets , 1950 .
[16] T. H. Hildebrandt. Integration in abstract spaces , 1953 .
[17] J. Deny,et al. Les espaces du type de Beppo Levi , 1954 .
[18] Herbert Busemann,et al. The geometry of geodesics , 1955 .
[19] H. Rauch. Harmonic and Analytic Functions Of Several Variables and The Maximal Theorem Of Hardy and Littlewood , 1956, Canadian Journal of Mathematics.
[20] K. Smith. A Generalization Of An Inequality Of Hardy and Littlewood , 1956, Canadian Journal of Mathematics.
[21] B. Fuglede. Extremal length and functional completion , 1957 .
[22] Felix E. Browder,et al. Functional analysis and partial differential equations. II , 1959 .
[23] Formes et espaces de Dirichlet , 1960 .
[24] H. Wallin. Continuous functions and potential theory , 1963 .
[25] Edwin Hewitt,et al. Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .
[26] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[27] W. Rudin. Real and complex analysis , 1968 .
[28] W. Ziemer. Extremal length and conformal capacity , 1967 .
[29] Yu. G. Reshetnyak. Space mappings with bounded distortion , 1967 .
[30] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[31] W. Ziemer. Extremal length and $p$-capacity. , 1969 .
[32] R. Coifman,et al. Singular integrals and multipliers on homogeneous spaces , 1970 .
[33] M. Brelot. On Topologies and Boundaries in Potential Theory , 1971 .
[34] Jussi Väisälä,et al. Lectures on n-Dimensional Quasiconformal Mappings , 1971 .
[35] M. Schechter. Principles of Functional Analysis , 1971 .
[36] Ronald R. Coifman,et al. Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .
[37] B. Muckenhoupt,et al. Weighted norm inequalities for the Hardy maximal function , 1972 .
[38] H. Fédérer,et al. The Lebesgue Set of a Function whose Distribution Derivatives are p-th Power Summable , 1972 .
[39] A. Calderón. Estimates for singular integral operators in terms of maximal functions , 1972 .
[40] L. Schwartz. Radon measures on arbitrary topological spaces and cylindrical measures , 1973 .
[41] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[42] Pertti Mattila,et al. Integration in a space of measures , 1973 .
[43] James R. Munkres,et al. Topology; a first course , 1974 .
[44] Joseph J. Hesse. $p$-extremal length and $p$-measurable curve families , 1975 .
[45] G. Weiss,et al. Extensions of Hardy spaces and their use in analysis , 1977 .
[46] Konrad Jacobs,et al. Measure and integral , 1978 .
[47] Enrico Giusti,et al. On the regularity of the minima of variational integrals , 1982 .
[48] Carlos E. Kenig,et al. The local regularity of solutions of degenerate elliptic equations , 1982 .
[49] P. Buser. A note on the isoperimetric constant , 1982 .
[50] Bruno Franchi,et al. Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients , 1983 .
[51] J. Doob. Classical potential theory and its probabilistic counterpart , 1984 .
[52] J. Diestel. Sequences and series in Banach spaces , 1984 .
[53] J. Mitchell. On Carnot-Carathéodory metrics , 1985 .
[54] J. Lindenstrauss,et al. Extensions of lipschitz maps into Banach spaces , 1986 .
[55] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[56] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[57] R. Strichartz. Sub-Riemannian geometry , 1986 .
[58] A. Kechris. Classical descriptive set theory , 1987 .
[59] S. Konyagin,et al. On measures with the doubling condition , 1988 .
[60] Matti Vuorinen,et al. Conformal Geometry and Quasiregular Mappings , 1988 .
[61] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[62] H. M. Reimann. An estimate for pseudoconformal capacities on the sphere , 1989 .
[63] P. Pansu. Dimension conforme et sphère à l'infini des variétés à courbure négative , 1989 .
[64] W. Ziemer. Weakly differentiable functions , 1989 .
[65] L. Carleson,et al. The Collected Works of Arne Beurling , 1989 .
[66] Luigi Ambrosio,et al. Metric space valued functions of bounded variation , 1990 .
[67] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[68] I. Holopainen. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds , 1990 .
[69] S. L. Sobolev,et al. Some Applications of Functional Analysis in Mathematical Physics , 1991 .
[70] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[71] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[72] L. Evans. Measure theory and fine properties of functions , 1992 .
[73] L. Saloff-Coste,et al. A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .
[74] T. Kumagai. Regularity, closedness and spectral dimensions of the Dirichlet forms on P.C.F. self-similar sets , 1993 .
[75] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[76] R. Schoen,et al. Sobolev spaces and harmonic maps for metric space targets , 1993 .
[77] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[78] Richard L. Wheeden,et al. Weighted Sobolev-Poincaré inequalities for Grushin type operators , 1994 .
[79] B. Hambly,et al. Transition density estimates for Brownian motion on affine nested fractals , 1994 .
[80] Jun Kigami. Effective resistances for harmonic structures on p.c.f. self-similar sets , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.
[81] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[82] M. Ledoux,et al. Sobolev inequalities in disguise , 1995 .
[83] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[84] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[85] U. Mosco,et al. Sobolev inequalities on homogeneous spaces , 1995 .
[86] P. Koskela,et al. Sobolev meets Poincaré , 1995 .
[87] Richard L. Wheeden,et al. Representation formulas and weighted Poincar inequalities for Hrmander vector fields , 1995 .
[88] J. Heinonen,et al. Definitions of quasiconformality , 1995 .
[89] Peter Li,et al. Green's functions, harmonic functions, and volume comparison , 1995 .
[90] Piotr Hajłasz,et al. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .
[91] S. Semmes,et al. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities , 1996 .
[92] Hiroaki Aikawwa,et al. Potential Theory - Selected Topics , 1996 .
[93] Karl-Theodor Sturm,et al. Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality , 1996 .
[94] S. Semmes. Good metric spaces without good parameterizations , 1996 .
[95] Juha Kinnunen,et al. THE SOBOLEV CAPACITY ON METRIC SPACES , 1996 .
[96] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[97] J. Heinonen,et al. From local to global in quasiconformal structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[98] Nicola Garofalo,et al. ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .
[99] Thierry Delmotte. Inégalité de Harnack elliptique sur les graphes , 1997 .
[100] S. Treil,et al. Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces , 1997, math/9711210.
[101] O. Martio,et al. Traces of Sobolev Functions on Fractal Type Sets and Characterization of Extension Domains , 1997 .
[102] Stephen Semmes,et al. Fractured fractals and broken dreams : self-similar geometry through metric and measure , 1997 .
[103] Marc Bourdon,et al. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings , 1997 .
[104] T. Colding,et al. HARMONIC FUNCTIONS ON MANIFOLDS , 1997 .
[105] I. Holopainen,et al. p-harmonic functions on graphs and manifolds , 1997 .
[106] Jan Malý,et al. Fine Regularity of Solutions of Elliptic Partial Differential Equations , 1997 .
[107] Yu. G. Reshetnyak. Sobolev-Type Classes of Functions with Values in a Metric Space. II , 1997 .
[108] Christian Houdré,et al. Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .
[109] N. Weaver. Lipschitz algebras and derivations II: exterior differentiation , 1998, math/9807096.
[110] J. Tyson. Quasiconformality and quasisymmetry in metric measure spaces. , 1998 .
[111] R. Strichartz. Fractals in the Large , 1998, Canadian Journal of Mathematics.
[112] Pawel Strzelecki,et al. Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces , 1998 .
[113] X. Tolsa. COTLAR'S INEQUALITY WITHOUT THE DOUBLING CONDITION AND EXISTENCE OF PRINCIPAL VALUES FOR THE CAUCHY INTEGRAL OF MEASURES , 1998 .
[114] J. Heinonen,et al. Quasiconformal maps in metric spaces with controlled geometry , 1998 .
[115] Robert E. Megginson. An Introduction to Banach Space Theory , 1998 .
[116] E. Saksman,et al. Every complete doubling metric space carries a doubling measure , 1998 .
[117] P. Koskela,et al. Quasiconformal mappings and Sobolev spaces , 1998 .
[118] Robert S. Strichartz,et al. Some Properties of Laplacians on Fractals , 1999 .
[119] E. Saksman. REMARKS ON THE NONEXISTENCE OF DOUBLING MEASURES , 1999 .
[120] Alexander Grigor'yan,et al. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .
[121] S. Yau,et al. Surveys in Differential Geometry , 1999 .
[122] Stephen M. Buckley,et al. IS THE MAXIMAL FUNCTION OF A LIPSCHITZ FUNCTION CONTINUOUS , 1999 .
[123] X. Tolsa. $L^2$-boundedness of the Cauchy integral operator for continuous measures , 1999 .
[124] P. Koskela. Removable sets for Sobolev spaces , 1999 .
[125] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[126] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[127] Jeff Cheeger,et al. Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .
[128] M. Ohtsuka,et al. EXTREMAL LENGTH OF VECTOR MEASURES , 1999 .
[129] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[130] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[131] B. Hambly,et al. Transition Density Estimates for Diffusion Processes on Post Critically Finite Self‐Similar Fractals , 1999 .
[132] DEFINITIONS OF SOBOLEV CLASSES ON METRIC SPACES , 1999 .
[133] J. Tyson. Geometric and analytic applications of a generalized definition of the conformal modulus. , 1999 .
[134] R. Strichartz. ANALYSIS ON FRACTALS , 1999 .
[135] E. Lanconelli,et al. On the Poincaré inequality for vector fields , 2000 .
[136] Stephen J. Gardiner,et al. Classical Potential Theory , 2000 .
[137] T. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .
[138] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[139] N. Shanmugalingam. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .
[140] W. Woess. Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .
[141] U. Lang,et al. Extensions of Lipschitz maps into Hadamard spaces , 2000 .
[142] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[143] L. Ambrosio,et al. Currents in metric spaces , 2000 .
[144] J. Heinonen. Lectures on Analysis on Metric Spaces , 2000 .
[145] J. Heinonen,et al. An n-dimensional space that admits a Poincare inequality but has no manifold points , 2000 .
[146] N. Shanmugalingam,et al. Regularity of quasi-minimizers on metric spaces , 2001 .
[147] J. Heinonen,et al. Sobolev classes of Banach space-valued functions and quasiconformal mappings , 2001 .
[148] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[149] J. Kigami,et al. Analysis on Fractals , 2001 .
[150] R. Strichartz. The Laplacian on the Sierpinski gasket via the method of averages , 2001 .
[151] Laurent Saloff-Coste,et al. Aspects of Sobolev-type inequalities , 2001 .
[152] L. Saloff‐Coste. RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .
[153] T. Shioya,et al. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces , 2001 .
[154] G. Lu,et al. Best constants for Moser-Trudinger inequalities on the Heisenberg group , 2001 .
[155] Jun Kigami,et al. Constructing a Laplacian on the Diamond Fractal , 2001, Exp. Math..
[156] M. Troyanov,et al. Axiomatic theory of Sobolev spaces , 2001 .
[157] Luigi Ambrosio,et al. Some Fine Properties of Sets of Finite Perimeter in Ahlfors Regular Metric Measure Spaces , 2001 .
[158] Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems , 2001 .
[159] N. Shanmugalingam,et al. Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces , 2001 .
[160] Bruno Franchi,et al. Rectifiability and perimeter in the Heisenberg group , 2001 .
[161] N. Shanmugalingam. Harmonic functions on metric spaces , 2001 .
[162] Robert S. Strichartz,et al. Harmonic mappings of the Sierpinski gasket to the circle , 2001 .
[163] T. O’Neil. Geometric Measure Theory , 2002 .
[164] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[165] A. Kufner,et al. Axiomatic Sobolev spaces on metric spaces , 2002 .
[166] G. Citti,et al. Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature , 2002 .
[167] Quasisymmetric parametrizations of two-dimensional metric spheres , 2001, math/0107171.
[168] J. Kinnunen,et al. Lebesgue points for Sobolev functions on metric spaces , 2002 .
[169] L. Capogna,et al. Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type , 2002 .
[170] M. Troyanov,et al. Capacities in metric spaces , 2002 .
[171] J. Verdera. The fall of the doubling condition in Calderón-Zygmund theory , 2002 .
[173] R. Wheeden,et al. Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces , 2002 .
[174] P. Koskela,et al. Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces☆ , 2003 .
[175] 信 大津賀. Extremal length and precise functions , 2003 .
[176] Jiaxin Hu,et al. Heat kernels on metric measure spaces and an application to semilinear elliptic equations , 2003 .
[177] N. Shanmugalingam,et al. The Dirichlet problem for p-harmonic functions on metric spaces , 2003 .
[178] C. Villani. Topics in Optimal Transportation , 2003 .
[179] P. Hajłasz. A new characterization of the Sobolev space , 2003 .
[180] Robert S. Strichartz,et al. Function spaces on fractals , 2003 .
[181] Fedor Nazarov,et al. TheTb-theorem on non-homogeneous spaces , 2003 .
[182] L. Capogna,et al. Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type , 2003 .
[183] N. Shanmugalingam,et al. The Perron method for p-harmonic functions in metric spaces , 2003 .
[184] S. Keith. Modulus and the Poincaré inequality on metric measure spaces , 2003 .
[185] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[186] Michele Miranda,et al. Functions of bounded variation on “good” metric spaces , 2003 .
[187] S. Keith. A differentiable structure for metric measure spaces , 2004 .
[188] S. Keith. Measurable differentiable structures and the Poincaré inequality , 2004 .
[189] L. Ambrosio,et al. Special Functions of Bounded Variation in Doubling Metric Measure Spaces , 2004 .
[190] Diego Pallara,et al. Calculus of variations : topics from the mathematical heritage of E. de Giorgi , 2004 .
[191] Urs Lang,et al. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions , 2004, math/0410048.
[192] Paolo Tilli,et al. Topics on analysis in metric spaces , 2004 .
[193] P. Koskela,et al. Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen , 2004 .
[194] R. Strichartz,et al. p-Energy and p-Harmonic Functions on Sierpinski Gasket Type Fractals , 2004 .
[195] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[196] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[197] Weak curvature conditions and functional inequalities , 2005, math/0506481.
[198] N. Shanmugalingam,et al. Polar sets on metric spaces , 2005 .
[199] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary , 2002, math/0208135.
[200] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[201] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[202] S. Buckley,et al. Sphericalization and flattening , 2005 .
[203] Karl-Theodor Sturm. Generalized Ricci bounds and convergence of metric measure spaces , 2005 .
[204] Kai Rajala. Surface families and boundary behavior of quasiregular mappings , 2005 .
[205] Karl-Theodor Sturm. A curvature-dimension condition for metric measure spaces , 2006 .
[206] D. Danielli,et al. Non-doubling Ahlfors Measures, Perimeter Measures, And the Characterization of the Trace Spaces of Sobolev Functions in Carnot-caratheodory Spaces , 2006 .
[207] B. Kleiner. The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity , 2006 .
[208] Wiener criterion for Cheeger p-harmonic functions on metric spaces , 2006 .
[209] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[210] Pointwise characterizations of Hardy-Sobolev functions , 2006, math/0611901.
[211] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[212] J. Cheeger,et al. Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.
[213] Bruce Kleiner,et al. Generalized differentiation and bi-Lipschitz nonembedding in L1⁎ , 2006 .
[214] P. Hajłasz. Sobolev Mappings: Lipschitz Density is not a Bi-Lipschitz Invariant of the Target , 2006, math/0602029.
[215] N. Shanmugalingam,et al. Measurability of equivalence classes and MEC$_p$-property in metric spaces , 2007 .
[216] Scott D. Pauls,et al. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem , 2007 .
[217] J. M. Mackay. Spaces and groups with conformal dimension greater than one , 2007, 0711.0417.
[218] R. Korte. Geometric Implications of the Poincaré Inequality , 2007 .
[219] N. Shanmugalingam,et al. Lebesgue points and capacities via the boxing inequality in metric spaces , 2008 .
[220] P. Hajłasz. Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces , 2009 .
[221] R. Strichartz,et al. Infinitesimal resistance metrics on Sierpinski gasket type fractals , 2008 .
[222] D. Danielli,et al. Local Behavior of p-harmonic Green’s Functions in Metric Spaces , 2008, 0807.1323.
[223] N. Shanmugalingam,et al. Uniformity from Gromov hyperbolicity , 2008 .
[224] N. Shanmugalingam,et al. Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces , 2008 .
[225] Bruce Kleiner,et al. Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.
[226] X. Zhong,et al. The Poincare inequality is an open ended condition , 2008 .
[227] Xiangdong Xie,et al. Metric space inversions, quasihyperbolic distance, and uniform spaces , 2008 .
[228] Assaf Naor,et al. Compression bounds for Lipschitz maps from the Heisenberg group to L1 , 2009, ArXiv.
[229] Fabrice Baudoin,et al. Perelman’s Entropy and Doubling Property on Riemannian Manifolds , 2009, 0911.1819.
[230] Mathematische Annalen. Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces , 2009 .
[231] Piotr Hajłasz,et al. Sobolev Mappings between Manifolds and Metric Spaces , 2009 .
[232] A Universality Property of Sobolev Spaces in Metric Measure Spaces , 2009 .
[233] Bruce Kleiner,et al. Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.
[234] Hrant Hakobyan. Conformal Dimension: Cantor Sets and Fuglede Modulus , 2009 .
[235] B. Kleiner,et al. Combinatorial modulus, the Combinatorial Loewner Property, and Coxeter groups , 2010, 1002.1991.
[236] Renjin Jiang. Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces , 2010, 1004.1101.
[237] Marshall Williams. Geometric and analytic quasiconformality in metric measure spaces , 2010, 1008.3588.
[238] N. Shanmugalingam,et al. The ∞-Poincaré Inequality in Metric Measure Spaces , 2010 .
[239] O. Kharlampovich,et al. Combinatorial and Geometric Group Theory , 2010 .
[240] Assaf Naor,et al. L_1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry , 2010, ArXiv.
[241] R. Bass,et al. Uniqueness of Brownian motion on Sierpinski carpets , 2010 .
[242] Nicola Gigli,et al. Heat Flow on Alexandrov Spaces , 2010, 1008.1319.
[243] J. Heinonen,et al. Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum , 2010 .
[244] D. Herron. Uniform metric spaces, annular quasiconvexity and pointed tangent spaces , 2011 .
[245] J. Wu,et al. Geometry and quasisymmetric parametrization of Semmes spaces , 2011, 1111.2197.
[246] Bruce Kleiner,et al. Realization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1 , 2011, 1110.2406.
[247] B. Kleiner,et al. DIFFERENTIABLE STRUCTURES ON METRIC MEASURE SPACES: A PRIMER , 2011, 1108.1324.
[248] N. Shanmugalingam,et al. Regularity of Sets with Quasiminimal Boundary Surfaces in Metric Spaces , 2011, 1105.3058.
[249] S. Gersten. Essays in Group Theory , 2011 .
[250] Jasun Gong. Rigidity of Derivations in the Plane and in Metric Measure Spaces , 2011, 1110.4282.
[251] E. Durand-Cartagena,et al. p-Poincaré inequality versus ∞-Poincaré inequality: some counterexamples , 2012 .
[252] David Bate,et al. Differentiability, porosity and doubling in metric measure spaces , 2011, 1108.0318.
[253] Simone Di Marino,et al. Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope , 2012, 1212.3779.
[254] Naotaka Kajino,et al. Heat Kernel Asymptotics for the Measurable Riemannian Structure on the Sierpinski Gasket , 2012 .
[255] Anders Björn,et al. Nonlinear Potential Theory on Metric Spaces , 2012 .
[256] P. Koskela,et al. Isoperimetric inequality from the poisson equation via curvature , 2012 .
[257] Naotaka Kajino. Time changes of local Dirichlet spaces by energy measures of harmonic functions , 2012 .
[258] Jasun Gong. The Lip-lip condition on metric measure spaces , 2012, 1208.2869.
[259] P. Koskela,et al. Geometry and Analysis of Dirichlet forms , 2012, 1208.4955.
[260] C. Bishop,et al. Frequency of dimension distortion under quasisymmetric mappings , 2012 .
[261] L. Ambrosio,et al. Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below—The Compact Case , 2012, 1205.3288.
[262] Alexander Brudnyi,et al. Selected Topics in Analysis on Metric Spaces , 2012 .
[263] S. Wenger,et al. An upper gradient approach to weakly differentiable cochains , 2012, 1208.4350.
[264] P. Koskela,et al. $L^∞$-variational problem associated to Dirichlet forms , 2012 .
[265] Sean Li,et al. Coarse differentiation and quantitative nonembeddability for Carnot groups , 2013, 1304.6633.
[266] Luk'avs Mal'y. Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices , 2012, 1210.1442.
[267] J. Tyson,et al. Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets , 2012, 1201.3548.
[268] Noel R. DeJarnette. Self improving Orlicz-Poincare inequalities , 2013 .
[269] L. Ambrosio,et al. On the Bakry-\'Emery condition, the gradient estimates and the Local-to-Global property of RCD*(K,N) metric measure spaces , 2013, 1309.4664.
[270] Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces , 2013, Discrete & Continuous Dynamical Systems - A.
[271] L. Ambrosio,et al. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. , 2011, 1111.3730.
[272] Dachun Yang,et al. Sobolev Spaces on Metric Measure Spaces , 2014 .
[273] F. John. Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .
[274] L. Ambrosio,et al. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.
[275] Simone Di Marino,et al. On the duality between $p$-modulus and probability measures , 2013, Journal of the European Mathematical Society (Print).
[276] N. Shanmugalingam,et al. Semmes family of curves and a characterization of functions of bounded variation in terms of curves , 2015 .
[277] M. Miranda,et al. Boundary measures, generalized Gauss–Green formulas, and mean value property in metric measure spaces , 2013, 1304.4352.
[278] N. Shanmugalingam,et al. Preservation of bounded geometry under sphericalization and flattening , 2015 .
[279] D. Herron. Gromov–Hausdorff distance for pointed metric spaces , 2016 .
[280] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[281] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[282] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .