Continuous-Time Dynamic Network Embeddings

Networks evolve continuously over time with the addition, deletion, and changing of links and nodes. Although many networks contain this type of temporal information, the majority of research in network representation learning has focused on static snapshots of the graph and has largely ignored the temporal dynamics of the network. In this work, we describe a general framework for incorporating temporal information into network embedding methods. The framework gives rise to methods for learning time-respecting embeddings from continuous-time dynamic networks. Overall, the experiments demonstrate the effectiveness of the proposed framework and dynamic network embedding approach as it achieves an average gain of 11.9% across all methods and graphs. The results indicate that modeling temporal dependencies in graphs is important for learning appropriate and meaningful network representations.

[1]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[2]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[3]  Daniel R. Figueiredo,et al.  struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.

[4]  Tim Oates,et al.  Modeling the Spread of Influence on the Blogosphere , 2006 .

[5]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[6]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[7]  Padhraic Smyth,et al.  Prediction and ranking algorithms for event-based network data , 2005, SKDD.

[8]  Xiangnan He,et al.  Attributed Social Network Embedding , 2017, IEEE Transactions on Knowledge and Data Engineering.

[9]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[10]  Ryan A. Rossi,et al.  Interactive Visual Graph Analytics on the Web , 2015, ICWSM.

[11]  Tina Eliassi-Rad,et al.  Generating Graph Snapshots from Streaming Edge Data , 2016, WWW.

[12]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[13]  Valdis E. Krebs,et al.  Mapping Networks of Terrorist Cells , 2001 .

[14]  Philip S. Yu,et al.  Outlier detection in graph streams , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[15]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[16]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  David D. Jensen,et al.  Exploiting relational structure to understand publication patterns in high-energy physics , 2003, SKDD.

[18]  Ryan A. Rossi,et al.  Modeling dynamic behavior in large evolving graphs , 2013, WSDM.

[19]  Ryan A. Rossi,et al.  Time-Evolving Relational Classification and Ensemble Methods , 2012, PAKDD.

[20]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[21]  J. Delvenne,et al.  Random walks on graphs , 2004 .

[22]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Sergio D. Servetto,et al.  Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks , 2002, WSNA '02.

[24]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Le Song,et al.  Dynamic mixed membership blockmodel for evolving networks , 2009, ICML '09.

[26]  Ryan A. Rossi,et al.  A Dynamical System for PageRank with Time-Dependent Teleportation , 2012, Internet Math..

[27]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[28]  F. Chung Random walks and local cuts in graphs , 2007 .

[29]  Philip S. Yu,et al.  On dense pattern mining in graph streams , 2010, Proc. VLDB Endow..

[30]  Tamara G. Kolda,et al.  Temporal Link Prediction Using Matrix and Tensor Factorizations , 2010, TKDD.

[31]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[32]  Steve Harenberg,et al.  Anomaly detection in dynamic networks: a survey , 2015 .

[33]  Ryohei Hisano,et al.  Semi-supervised Graph Embedding Approach to Dynamic Link Prediction , 2016, ArXiv.

[34]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[35]  Ryan A. Rossi,et al.  Deep Graph Attention Model , 2017, ArXiv.

[36]  M. Newman,et al.  Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Linyuan Lu,et al.  Link prediction based on local random walk , 2010, 1001.2467.

[38]  Charu C. Aggarwal,et al.  Evolutionary Network Analysis , 2014, ACM Comput. Surv..

[39]  B. Grenfell,et al.  Mean-field-type equations for spread of epidemics: the ‘small world’ model , 1999 .

[40]  Ryan A. Rossi,et al.  Ranking Links on the Web: Search and Surf Engines , 2008, IEA/AIE.

[41]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[42]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[43]  Roger Guimerà,et al.  Robust patterns in food web structure. , 2001, Physical review letters.

[44]  Rémy Cazabet,et al.  Dynamic Community Detection , 2014, Encyclopedia of Social Network Analysis and Mining.

[45]  Ryan A. Rossi,et al.  Modeling the evolution of discussion topics and communication to improve relational classification , 2010, SOMA '10.

[46]  Minsuk Kahng,et al.  Scalable graph exploration and visualization: Sensemaking challenges and opportunities , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[47]  F. Göbel,et al.  Random walks on graphs , 1974 .

[48]  R. May,et al.  Infection dynamics on scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Jennifer Neville,et al.  Using relational knowledge discovery to prevent securities fraud , 2005, KDD '05.

[51]  Kevin Chen-Chuan Chang,et al.  Learning Community Embedding with Community Detection and Node Embedding on Graphs , 2017, CIKM.

[52]  Ryan A. Rossi,et al.  Inductive Representation Learning in Large Attributed Graphs , 2017 .

[53]  Nitesh V. Chawla,et al.  metapath2vec: Scalable Representation Learning for Heterogeneous Networks , 2017, KDD.

[54]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[55]  Ryan A. Rossi,et al.  On Sampling from Massive Graph Streams , 2017, Proc. VLDB Endow..

[56]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[57]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[58]  Ryan A. Rossi,et al.  Deep Feature Learning for Graphs , 2017, ArXiv.

[59]  Alexander J. Smola,et al.  Distributed large-scale natural graph factorization , 2013, WWW.

[60]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[61]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[62]  Qiongkai Xu,et al.  GraRep: Learning Graph Representations with Global Structural Information , 2015, CIKM.

[63]  Toine Bogers,et al.  Movie Recommendation using Random Walks over the Contextual Graph , 2010 .

[64]  Zhuhua Cai,et al.  Facilitating real-time graph mining , 2012, CloudDB '12.

[65]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[66]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[67]  Sudipto Guha,et al.  Graph Synopses, Sketches, and Streams: A Survey , 2012, Proc. VLDB Endow..

[68]  Yan Liu,et al.  Deep Generative Dual Memory Network for Continual Learning , 2017, ArXiv.