Sequential Monte Carlo Instant Radiosity

Instant Radiosity and its derivatives are interactive methods for efficiently estimating global (indirect) illumination. They represent the last indirect bounce of illumination before the camera as the composite radiance field emitted by a set of virtual point light sources (VPLs). In complex scenes, current algorithms suffer from a difficult combination of two issues: it remains a challenge to distribute VPLs in a manner that simultaneously gives a high-quality indirect illumination solution for each frame, and to do so in a temporally coherent manner. We address both issues by building, and maintaining over time, an adaptive and temporally coherent distribution of VPLs in locations where they bring indirect light to the image. We introduce a novel heuristic sampling method that strives to only move as few of the VPLs between frames as possible. The result is, to the best of our knowledge, the first interactive global illumination algorithm that works in complex, highly-occluded scenes, suffers little from temporal flickering, supports moving cameras and light sources, and is output-sensitive in the sense that it places VPLs in locations that matter most to the final result.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  F. E. Nicodemus Directional Reflectance and Emissivity of an Opaque Surface , 1965 .

[3]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[4]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  W. Jack Bouknight,et al.  A procedure for generation of three-dimensional half-toned computer graphics presentations , 1970, CACM.

[7]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[8]  S. Yakowitz,et al.  Weighted Monte Carlo Integration , 1978 .

[9]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[10]  Introduction To Functional Analysis; 2nd edition (Angus E. Taylor and David C. Lay) , 1982 .

[11]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[12]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[13]  A. Hibbs QED: The Strange Theory of Light and Matter , 1986 .

[14]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[15]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[16]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[17]  Devendra Kalra,et al.  Guaranteed ray intersections with implicit surfaces , 1989, SIGGRAPH.

[18]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[19]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[20]  S. Meiser,et al.  Point Location in Arrangements of Hyperplanes , 1993, Inf. Comput..

[21]  Salim S. Abi-Ezzi,et al.  The Cone of Normals Technique for Fast Processing of Curved Patches , 1993, Comput. Graph. Forum.

[22]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[23]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[24]  Dennis Reil Forum. , 1996, Environmental health perspectives.

[25]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[26]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[27]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[28]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[29]  Vlastimil Havran,et al.  Heuristic ray shooting algorithms , 2000 .

[30]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[31]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[32]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[33]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[34]  Rae A. Earnshaw,et al.  Shadow Mapping for Hemispherical and Omnidirectional Light Sources , 2002 .

[35]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[36]  Philipp Slusallek,et al.  Interactive Global Illumination in Complex and Highly Occluded Environments , 2003, Rendering Techniques.

[37]  Timo Aila,et al.  Alias-Free Shadow Maps , 2004, Rendering Techniques.

[38]  Timo Aila,et al.  dPVS: an occlusion culling system for massive dynamic environments , 2004, IEEE Computer Graphics and Applications.

[39]  David Salomon,et al.  Data compression - The Complete Reference, 4th Edition , 2004 .

[40]  Michael F. Cohen,et al.  Digital photography with flash and no-flash image pairs , 2004, ACM Trans. Graph..

[41]  F. Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, ACM Trans. Graph..

[42]  Carsten Dachsbacher,et al.  Reflective shadow maps , 2005, I3D '05.

[43]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH '05.

[44]  Gershon Elber,et al.  Optimal bounding cones of vectors in three dimensions , 2005, Inf. Process. Lett..

[45]  T. Kollig,et al.  Illumination in the Presence of Weak Singularities , 2006 .

[46]  Adam Arbree,et al.  Multidimensional lightcuts , 2006, ACM Trans. Graph..

[47]  K. Athreya,et al.  Measure Theory and Probability Theory , 2006 .

[48]  Bernard Péroche,et al.  Bidirectional instant radiosity , 2006, EGSR '06.

[49]  Timo Aila,et al.  Mutated Kd-tree Importance Sampling , 2006 .

[50]  Bernard Péroche,et al.  Non-interleaved deferred shading of interleaved sample patterns , 2006, GH '06.

[51]  Bernard Péroche,et al.  Metropolis Instant Radiosity , 2007, Comput. Graph. Forum.

[52]  Jaakko Lehtinen,et al.  Incremental Instant Radiosity for Real-Time Indirect Illumination , 2007, Rendering Techniques.

[53]  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[54]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[55]  Edgar Velázquez-Armendáriz,et al.  Tensor Clustering for Rendering Many‐Light Animations , 2008 .

[56]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH 2008.

[57]  Tomas Akenine-Möller,et al.  Real-time rendering, 3rd Edition , 2008 .

[58]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[59]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[60]  Bruce Walter,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, ACM Trans. Graph..

[61]  Hans-Peter Seidel,et al.  Real-time Indirect Illumination with Clustered Visibility , 2009, VMV.

[62]  Martin Knecht,et al.  Differential Instant Radiosity for mixed reality , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[63]  Philipp Slusallek,et al.  Simple and Robust Iterative Importance Sampling of Virtual Point Lights , 2010, Eurographics.

[64]  Robert Kooima Generalized Perspective Projection , 2011 .

[65]  Hans-Peter Seidel,et al.  Making Imperfect Shadow Maps View‐Adaptive: High‐Quality Global Illumination in Large Dynamic Scenes , 2011, Comput. Graph. Forum.

[66]  Robert M. Farber,et al.  CUDA Application Design and Development , 2011 .

[67]  Lei Yang,et al.  Temporal Coherence Methods in Real‐Time Rendering , 2012, Comput. Graph. Forum.

[68]  Anton Kaplanyan,et al.  Reflective Shadow Map Clustering for Real-Time Global Illumination , 2012, Eurographics.

[69]  Ulf Assarsson,et al.  Clustered deferred and forward shading , 2012, EGGH-HPG'12.

[70]  Philipp Slusallek,et al.  Importance Caching for Complex Illumination , 2012, Comput. Graph. Forum.

[71]  Tero Karras,et al.  Maximizing parallelism in the construction of BVHs, octrees, and k-d trees , 2012, EGGH-HPG'12.

[72]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[73]  Yung-Yu Chuang,et al.  VisibilityCluster: Average Directional Visibility for Many-Light Rendering , 2013, IEEE Transactions on Visualization and Computer Graphics.

[74]  Timo Aila,et al.  On quality metrics of bounding volume hierarchies , 2013, HPG '13.

[75]  Morgan McGuire,et al.  Lighting Deep G-Bu↵ers: Single-Pass, Layered Depth Images with Minimum Separation Applied to Indirect Illumination , 2013 .

[76]  Vlastimil Havran,et al.  Temporally Coherent Adaptive Sampling for Imperfect Shadow Maps , 2013, Comput. Graph. Forum.

[77]  Carsten Dachsbacher,et al.  Progressive Visibility Caching for Fast Indirect Illumination , 2013, VMV.

[78]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[79]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[80]  Carsten Dachsbacher,et al.  Rich‐VPLs for Improving the Versatility of Many‐Light Methods , 2015, Comput. Graph. Forum.

[81]  Frédo Durand,et al.  Eurographics Symposium on Rendering 2015 Probabilistic Connections for Bidirectional Path Tracing Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing , 2022 .

[82]  Jaakko Lehtinen,et al.  Sequential Monte Carlo Instant Radiosity , 2017, IEEE Trans. Vis. Comput. Graph..