Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems

In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromecchanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

[1]  K. Menard Dynamic Mechanical Analysis: A Practical Introduction , 1997 .

[2]  L. Nicholson,et al.  Mechanical Properties of LaRC(TM)-SI Polymer for a Range of Molecular Weights , 2000 .

[3]  R. Spontak,et al.  Volume‐exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber , 2002 .

[4]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[5]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[6]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[7]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[8]  Guohua Chen,et al.  Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization , 2001 .

[9]  William H. Press,et al.  Numerical recipes , 1990 .

[10]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[11]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[12]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[13]  G. Weng,et al.  On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions , 1990 .

[14]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[15]  L. C. Brinson,et al.  Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites , 1998 .

[16]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[17]  J. Hinkley,et al.  Molecular Dynamics Simulations of Nanotube-Polymer Composites , 2001 .

[18]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[19]  K. Watson,et al.  Dispersion of single wall carbon nanotubes by in situ polymerization under sonication , 2002 .

[20]  J. Hinkley,et al.  Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide , 1999 .

[21]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[22]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[23]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[24]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[26]  The Combined Influence of Molecular Weight and Temperature on the Physical Aging and Creep Compliance of a Glassy Thermoplastic Polyimide , 2001 .

[27]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[28]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[29]  Guo-Hua Hu,et al.  A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization , 2000 .

[30]  Bingqing Wei,et al.  Study on poly(methyl methacrylate)/carbon nanotube composites , 1999 .

[31]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[32]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[33]  William L. Jorgensen,et al.  Do denaturants interact with aromatic hydrocarbons in water , 1993 .

[34]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[35]  N. Marzari,et al.  Textural and Micromorphological Effects on the Overall Elastic Response of Macroscopically Anisotropic Composites , 1992 .

[36]  L. Nicholson,et al.  Equivalent-Continuum Modeling With Application to Carbon Nanotubes , 2002 .

[37]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[38]  A. K. Stclair,et al.  Optically transparent/colorless polyimides , 1985 .

[39]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[40]  Michael Griebel,et al.  Reinforcement Mechanisms in Polymer Nanotube Composites: Simulated Non-Bonded and Cross-Linked Systems , 2000 .

[41]  The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide , 2001 .

[42]  H. Fukuda 1.13 – Thermoelastic Properties of Discontinuous Fiber Composites , 2000 .

[43]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[44]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[45]  T. L. Hill,et al.  On Steric Effects , 1946 .

[46]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[47]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[48]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[49]  J. Tsibouklis,et al.  Molecular Mechanics across Chemistry , 1998 .

[50]  J. Ferry Viscoelastic properties of polymers , 1961 .

[51]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[52]  C. Brooks Computer simulation of liquids , 1989 .