Ultra-high resolution fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns

Ultra-high field MRI can functionally image the cerebral cortex of human subjects at the submillimeter scale of cortical columns and laminae. Here, we investigate both in concert, by, for the first time, imaging ocular dominance columns (ODCs) in primary visual cortex (V1) across different cortical depths. We ensured that putative ODC patterns in V1 (a) are stable across runs, sessions, and scanners located in different continents (b) have a width (∼1.3 mm) expected from post-mortem and animal work and (c) are absent at the retinotopic location of the blind spot. We then dissociated the effects of bottom-up thalamo-cortical input and attentional feedback processes on activity in V1 across cortical depth. Importantly, the separation of bottom-up information flows into ODCs allowed us to validly compare attentional conditions while keeping the stimulus identical throughout the experiment. We find that, when correcting for draining vein effects and using both model-based and model-free approaches, the effect of monocular stimulation is largest at deep and middle cortical depths. Conversely, spatial attention influences BOLD activity exclusively near the pial surface. Our findings show that simultaneous interrogation of columnar and laminar dimensions of the cortical fold can dissociate thalamocortical inputs from top-down processing, and allow the investigation of their interactions without any stimulus manipulation. Significance Statement The advent of ultra-high field fMRI allows for the study of the human brain non-invasively at submillimeter resolution, bringing the scale of cortical columns and laminae into focus. De Hollander et al imaged the ocular dominance columns and laminae of V1 in concert, while manipulating top-down attention. This allowed them to separate feedforward from feedback processes in the brain itself, without resorting to the manipulation of incoming information. Their results show how feedforward and feedback processes interact in the primary visual cortex, highlighting the different computational roles separate laminae play.

[1]  Martin Havlicek,et al.  A dynamical model of the laminar BOLD response , 2019, NeuroImage.

[2]  Janneke F. M. Jehee,et al.  Improved methods for decoding sensory uncertainty from activity in the human visual cortex , 2019 .

[3]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[4]  Kamil Ugurbil,et al.  A critical assessment of data quality and venous effects in sub-millimeter fMRI , 2019, NeuroImage.

[5]  Rainer Goebel,et al.  Columnar clusters in the human motion complex reflect consciously perceived motion axis , 2019, Proceedings of the National Academy of Sciences.

[6]  Pierre-Louis Bazin,et al.  MP2RAGEME: T1, T2 *, and QSM mapping in one sequence at 7 tesla , 2018, Human brain mapping.

[7]  Russell A. Poldrack,et al.  Computational and informatics advances for reproducible data analysis in neuroimaging , 2018, ArXiv.

[8]  Jack L. Gallant,et al.  Voxelwise encoding models with non-spherical multivariate normal priors , 2018, NeuroImage.

[9]  Alexander Maier,et al.  Binocular Modulation of Monocular V1 Neurons , 2018, Current Biology.

[10]  Klaas E. Stephan,et al.  Laminar fMRI and computational theories of brain function , 2017, NeuroImage.

[11]  Pieter R. Roelfsema,et al.  Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex , 2017, NeuroImage.

[12]  David G Norris,et al.  Dissociable laminar profiles of concurrent bottom-up and top-down modulation in the human visual cortex , 2018, bioRxiv.

[13]  Martin I. Sereno,et al.  Modelling the Human Cortex in Three Dimensions , 2018, Trends in Cognitive Sciences.

[14]  Julia M. Huntenburg,et al.  Nighres: processing tools for high-resolution neuroimaging , 2018, GigaScience.

[15]  Antonio Ulloa,et al.  Simulating laminar neuroimaging data for a visual delayed match-to-sample task , 2018, NeuroImage.

[16]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[17]  Dimo Ivanov,et al.  Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI , 2018, Human brain mapping.

[18]  R. Blake,et al.  Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. , 2018, Annual review of psychology.

[19]  Amir Shmuel,et al.  Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns , 2018, NeuroImage.

[20]  Jonathan R. Polimeni,et al.  Analysis strategies for high-resolution UHF-fMRI data , 2017, NeuroImage.

[21]  José P. Marques,et al.  How to choose the right MR sequence for your research question at 7T and above? , 2017, NeuroImage.

[22]  Essa Yacoub,et al.  The impact of ultra-high field MRI on cognitive and computational neuroimaging , 2017, NeuroImage.

[23]  Wietske van der Zwaag,et al.  Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function , 2017, NeuroImage.

[24]  Essa Yacoub,et al.  Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity , 2016, NeuroImage.

[25]  Wolfgang Bogner,et al.  Key clinical benefits of neuroimaging at 7 T , 2016, NeuroImage.

[26]  Shane R. Crandall,et al.  Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs. , 2017, Cell reports.

[27]  Alexander S. Ecker,et al.  Attentional fluctuations induce shared variability in macaque primary visual cortex , 2017, Nature Communications.

[28]  A. Welchman,et al.  “What Not” Detectors Help the Brain See in Depth , 2017, Current Biology.

[29]  Matthew W Self,et al.  Layer-specificity in the effects of attention and working memory on activity in primary visual cortex , 2017, Nature Communications.

[30]  Satrajit S. Ghosh,et al.  Mindboggling morphometry of human brains , 2016, bioRxiv.

[31]  Ariel Rokem,et al.  Popeye: a Population Receptive Field Estimation Tool , 2016, J. Open Source Softw..

[32]  Michael Breakspear,et al.  The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex , 2016, NeuroImage.

[33]  Natalia Petridou,et al.  Systematic variation of population receptive field properties across cortical depth in human visual cortex , 2016, NeuroImage.

[34]  Robert Turner,et al.  Recent applications of UHF‐MRI in the study of human brain function and structure: a review , 2016, NMR in biomedicine.

[35]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[36]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[37]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[38]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[39]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[40]  Janneke F. M. Jehee,et al.  Sensory uncertainty decoded from visual cortex predicts behavior , 2015, Nature Neuroscience.

[41]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[42]  Jack L. Gallant,et al.  Pycortex: an interactive surface visualizer for fMRI , 2015, Front. Neuroinform..

[43]  J. Kruschke Chapter 8 – JAGS , 2015 .

[44]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[45]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[46]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[47]  J. Gee,et al.  The Insight ToolKit image registration framework , 2014, Front. Neuroinform..

[48]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[49]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[50]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[51]  Rolf Gruetter,et al.  New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping , 2013, PloS one.

[52]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[53]  Jerry L. Prince,et al.  A multiple object geometric deformable model for image segmentation , 2013, Comput. Vis. Image Underst..

[54]  N. Petridou,et al.  Pushing the limits of high‐resolution functional MRI using a simple high‐density multi‐element coil design , 2013, NMR in biomedicine.

[55]  Sumio Watanabe,et al.  A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..

[56]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[57]  Peng Zhang,et al.  Voluntary Attention Modulates Processing of Eye-Specific Visual Information , 2012, Psychological science.

[58]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[59]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[60]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[61]  Peng Zhang,et al.  Binocular Rivalry Requires Visual Attention , 2011, Neuron.

[62]  Essa Yacoub,et al.  Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns , 2011, NeuroImage.

[63]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[64]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[65]  A. Snyder,et al.  Longitudinal analysis of neural network development in preterm infants. , 2010, Cerebral cortex.

[66]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[67]  Yi Zhang,et al.  High-resolution fMRI mapping of ocular dominance layers in cat lateral geniculate nucleus , 2010, NeuroImage.

[68]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[69]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[70]  C. Clifford Binocular rivalry , 2009, Current Biology.

[71]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[72]  Kevan A C Martin,et al.  The Synaptic Connections between Cortical Areas V1 and V2 in Macaque Monkey , 2009, The Journal of Neuroscience.

[73]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[74]  N. Kriegeskorte,et al.  Revealing representational content with pattern-information fMRI--an introductory guide. , 2009, Social cognitive and affective neuroscience.

[75]  Aaron Schurger A very inexpensive MRI-compatible method for dichoptic visual stimulation , 2009, Journal of Neuroscience Methods.

[76]  Jonathan C Horton,et al.  Ocular Dominance Columns: Enigmas and Challenges , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[77]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[78]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[79]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[80]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[81]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[82]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[83]  Seong-Gi Kim,et al.  Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution , 2007, The Journal of Neuroscience.

[84]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[85]  R. Blake,et al.  Neural bases of binocular rivalry , 2006, Trends in Cognitive Sciences.

[86]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[87]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[88]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[89]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[90]  C. Koch,et al.  Continuous flash suppression reduces negative afterimages , 2005, Nature Neuroscience.

[91]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[92]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[93]  T. Lee,et al.  The cerebellum's involvement in the judgement of spatial orientation , 2005 .

[94]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[95]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[96]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[97]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[98]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[99]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[100]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[101]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[102]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[103]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[104]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[105]  L. Dixon,et al.  Automatic differentiation of algorithms , 2000 .

[106]  P. Dechent,et al.  Direct mapping of ocular dominance columns in human primary visual cortex , 2000, Neuroreport.

[107]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[108]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[109]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[110]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[111]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[112]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[113]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[114]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[118]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[119]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[120]  W. Levelt On binocular rivalry , 1965 .

[121]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[122]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[123]  Charles Wheatstone,et al.  Contributions to the Physiology of Vision. , 1837 .