The morphological diversity of comet 67P/Churyumov-Gerasimenko

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency’s Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

[1]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[2]  Kevin Hall,et al.  Thermal fatigue and thermal shock in bedrock: An attempt to unravel the geomorphic processes and products , 2014 .

[3]  L. Prockter,et al.  Origin and flatness of ponds on asteroid 433 Eros , 2013 .

[4]  H. Melosh,et al.  Shape, density, and geology of the nucleus of Comet 103P/Hartley 2 , 2013 .

[5]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[6]  D. Brownlee,et al.  The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys , 2013 .

[7]  A. Cheng,et al.  Surface geomorphology of Jupiter Family Comets: A geologic process perspective , 2013 .

[8]  Andrew R. Poppe,et al.  The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport , 2012 .

[9]  F. Scholten,et al.  The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data , 2012 .

[10]  K. Klaasen,et al.  Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy , 2010 .

[11]  M. Belton,et al.  Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1 , 2009 .

[12]  L. Jorda,et al.  Spitzer Space Telescope observations of the nucleus of comet 67P/Churyumov-Gerasimenko , 2008 .

[13]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[14]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[15]  Alexander T. Basilevsky,et al.  Comet nuclei: Morphology and implied processes of surface modification , 2006 .

[16]  Erik Asphaug,et al.  Low-speed impacts between rubble piles modeled as collections of polyhedra, 2 , 2006 .

[17]  D. Yeomans,et al.  Orbital Constraints upon the Nucleus of Comet 9P/Tempel 1 , 2005 .

[18]  D. Brownlee,et al.  Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft , 2004, Science.

[19]  A. Maloof,et al.  Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth , 2002 .

[20]  N. Samarasinha A model for the breakup of comet LINEAR (C/1999 S4) , 2001 .

[21]  M. Robinson,et al.  The nature of ponded deposits on Eros , 2001, Nature.

[22]  M D Betterton,et al.  Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[24]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[25]  D. Hughes,et al.  Comet P/Halley’s nucleus and its activity , 1987 .

[26]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .