On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01201b

New designs of microfluidic devices can facilitate recording of C. elegans larvae neuronal responses to precise mechanical stimuli, which reveal new understanding of development of mechanosensory neurons and circuits.

[1]  Laura J. Grundy,et al.  Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans , 2017, Lab on a chip.

[2]  S. Hallam,et al.  lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans , 1998, Nature.

[3]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[4]  M. Chalfie,et al.  Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. , 1989, Science.

[5]  M. Textor,et al.  single cells{ , 2007 .

[6]  H. Bringmann,et al.  Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans , 2011, Current Biology.

[7]  Monica Driscoll,et al.  A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans , 1994, Nature.

[8]  B. J. Casey,et al.  Imaging the developing brain: what have we learned about cognitive development? , 2005, Trends in Cognitive Sciences.

[9]  Patrick Delmas,et al.  Mechano-Gated Ion Channels in Sensory Systems , 2013, Cell.

[10]  J. R. Holt,et al.  Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. , 2011, The Journal of clinical investigation.

[11]  David M. Raizen,et al.  Lethargus is a Caenorhabditis elegans sleep-like state , 2008, Nature.

[12]  Jennifer K Pirri,et al.  The C. elegans Touch Response Facilitates Escape from Predacious Fungi , 2011, Current Biology.

[13]  David Biron,et al.  Why Do Sleeping Nematodes Adopt a Hockey-Stick-Like Posture? , 2014, PloS one.

[14]  Beth L Pruitt,et al.  Analysis of nematode mechanics by piezoresistive displacement clamp , 2007, Proceedings of the National Academy of Sciences.

[15]  D. Corey,et al.  New TRP Channels in Hearing and Mechanosensation , 2003, Neuron.

[16]  W. Schafer,et al.  Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors , 2010, Nature Neuroscience.

[17]  Beth L. Pruitt,et al.  Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. , 2017, Lab on a chip.

[18]  M. Chalfie,et al.  MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation , 2002, Nature.

[19]  Alessandro Sanzeni,et al.  Tissue mechanics govern the rapidly adapting and symmetrical response to touch , 2015, Proceedings of the National Academy of Sciences.

[20]  Nektarios Tavernarakis,et al.  unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion , 1997, Neuron.

[21]  David Biron,et al.  Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms , 2014, eLife.

[22]  W. Schafer,et al.  Analysis of NPR-1 Reveals a Circuit Mechanism for Behavioral Quiescence in C. elegans , 2013, Neuron.

[23]  Stanislav Nagy,et al.  Measurements of behavioral quiescence in Caenorhabditis elegans. , 2014, Methods.

[24]  M. Goodman,et al.  DEG/ENaC but Not TRP Channels Are the Major Mechanoelectrical Transduction Channels in a C. elegans Nociceptor , 2011, Neuron.

[25]  D. Albertson,et al.  Connectivity changes in a class of motoneurone during the development of a nematode , 1978, Nature.

[26]  C. Kung,et al.  A possible unifying principle for mechanosensation , 2005, Nature.

[27]  C. Fang-Yen,et al.  Comparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device. , 2017, Integrative biology : quantitative biosciences from nano to macro.

[28]  Navin Pokala,et al.  Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory , 2016, Cell.

[29]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[30]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[31]  D P Corey,et al.  Mechanosensation and the DEG/ENaC Ion Channels , 1996, Science.

[32]  Martin Chalfie,et al.  Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans , 1994, Nature.

[33]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. Kerr,et al.  In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation , 2003, Neuron.

[35]  David Biron,et al.  The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. , 2013, Sleep.

[36]  Alan C. Evans,et al.  Brain development during childhood and adolescence: a longitudinal MRI study , 1999, Nature Neuroscience.

[37]  J. Sulston,et al.  Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. , 1981, Developmental biology.

[38]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[39]  Beth L Pruitt,et al.  MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[40]  D. Hall,et al.  The Fusogen EFF-1 Controls Sculpting of Mechanosensory Dendrites , 2010, Science.

[41]  Paul W Sternberg,et al.  Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans , 2007, Nature Neuroscience.

[42]  W. Schafer,et al.  Caenorhabditis elegans TRPA-1 functions in mechanosensation , 2007, Nature Neuroscience.

[43]  A. Griffith,et al.  Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. , 2003, Genomics.

[44]  Annika L A Nichols,et al.  A global brain state underlies C. elegans sleep behavior , 2017, Science.

[45]  Paul W. Sternberg,et al.  Multilevel Modulation of a Sensory Motor Circuit during C. elegans Sleep and Arousal , 2014, Cell.