Phase Equilibria and Methane Enrichment of Clathrate Hydrates of Mine Ventilation Air + Tetrabutylphosphonium Bromide

This paper reports the experimentally measured phase equilibrium conditions for the clathrate hydrates formed from simulated mine ventilation air (0.50 vol % CH4 + 99.50 vol % air) in the presence of 0, 5, 20, 37.1, and 50 wt % of tetrabutylphosphonium bromide (TBPB). These equilibrium conditions were measured at the temperature range of 281.62–292.49 K and pressure range of 1.92–18.55 MPa by using an isochoric equilibrium step-heating pressure search method. The results showed that addition of TBPB allowed the hydrate dissociation condition for mine ventilation air to become milder, and at a given temperature, the lowest hydrate dissociation pressure was achieved at 37.1 wt % TBPB, corresponding to the stoichiometric composition for TBPB·32H2O. For each TBPB concentration tested, the semilogarithmic plots of hydrate dissociation pressure versus reciprocal absolute temperature can be satisfactorily fitted to two straight lines intersecting at 6.5 MPa. The slopes of these fitted straight lines are indiffer...

[1]  N. Ye,et al.  Hydrate Equilibrium Conditions of Tetra-n-butylphosphonium Bromide + Carbon Dioxide and the Crystal Morphologies , 2013 .

[2]  M. Santarelli,et al.  CO2 Hydrate: Formation and Dissociation Compared to Methane Hydrate , 2007 .

[3]  W. Kuhs Physics and Chemistry of Ice , 2007 .

[4]  A. A. Sizikov,et al.  Methane Capacity of Double Tetrabutylammonium Bromide + Methane Ionic Clathrate Hydrates , 2012 .

[5]  A. Higashi,et al.  Raman spectra of natural clathrates in deep ice cores , 1988 .

[6]  Juan G. Beltran,et al.  Gas hydrate phase equilibria measurement techniques and phase rule considerations , 2012 .

[7]  T. Ebinuma,et al.  Separation of Gas Molecule Using Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrate Crystals , 2003 .

[8]  D. Zhong,et al.  Equilibrium Conditions for Semiclathrate Hydrates Formed in the CH4 + N2 + O2 + Tetra-n-butyl Ammonium Bromide Systems , 2011 .

[9]  Shi Su,et al.  Catalytic combustion of coal mine ventilation air methane , 2006 .

[10]  Amir H. Mohammadi,et al.  Equilibrium Data and Thermodynamic Modeling of Nitrogen, Oxygen, and Air Clathrate Hydrates , 2003 .

[11]  J. Deschamps,et al.  Hydrogen Storage in Semiclathrate Hydrates of Tetrabutyl Ammonium Chloride and Tetrabutyl Phosphonium Bromide , 2010 .

[12]  N. H. Duc,et al.  CO2 capture by hydrate crystallization – A potential solution for gas emission of steelmaking industry , 2007 .

[13]  D. Zhong,et al.  Experimental Investigation of Methane Separation from Low-Concentration Coal Mine Gas (CH4/N2/O2) by Tetra-n-butyl Ammonium Bromide Semiclathrate Hydrate Crystallization , 2012 .

[14]  Qiang Sun,et al.  Experimental Study on the Separation of CH4 and N2 via Hydrate Formation in TBAB Solution , 2011 .

[15]  Amir H. Mohammadi,et al.  Application of gas hydrate formation in separation processes: A review of experimental studies , 2012 .

[16]  Hiroyuki Oyama,et al.  Gas Separation Method Using Tetra-n-butyl Ammonium Bromide Semi-Clathrate Hydrate , 2004 .

[17]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[18]  A. Delahaye,et al.  CO2 Enclathration in Hydrates of Peralkyl-(Ammonium/Phosphonium) Salts: Stability Conditions and Dissociation Enthalpies , 2010 .

[19]  R. Kumar,et al.  Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane , 2006 .

[20]  P. Englezos,et al.  Measurement of Dissolved Methane in Water in Equilibrium with Its Hydrate , 2002 .

[21]  A. Mohammadi,et al.  Phase equilibria of hydrogen sulphide clathrate hydrates in the presence of single or mixed salt aqueous solution , 2012 .

[22]  A. Higashi,et al.  The crystallographic structure of the natural air-hydrate in Greenland dye-3 deep ice core , 1990 .

[23]  R. Ohmura,et al.  Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide , 2013 .

[24]  Vladimir R. Belosludov,et al.  Theoretical investigation of the possibility of using multicomponent (N2-O2-CH4-Y2O) clathrate hydrates for methane recovery from mine gas , 2013 .

[25]  Amir H. Mohammadi,et al.  PHASE EQUILIBRIUM OF SEMICLATHRATE HYDRATES OF CO2, N2, CH4, OR H2 + TETRA-NBUTYLAMMONIUM BROMIDE AQUEOUS SOLUTION , 2011 .

[26]  G. Aydin,et al.  Mine ventilation air methane as a sustainable energy source , 2011 .

[27]  Raymond C. Pilcher,et al.  Status of worldwide coal mine methane emissions and use , 1998 .

[28]  V. Lipenkov,et al.  Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic Ice , 1999 .

[29]  A. Delahaye,et al.  Experimental Data on Phase Behavior of Simple Tetrabutylphosphonium Bromide (TBPB) and Mixed CO2 + TBPB Semiclathrate Hydrates , 2011 .

[30]  D. Liang,et al.  Phase Equilibrium Data of Tetrabutylphosphonium Bromide Plus Carbon Dioxide or Nitrogen Semiclathrate Hydrates , 2013 .

[31]  Hua Guo,et al.  An assessment of mine methane mitigation and utilisation technologies , 2005 .

[32]  K. Udachin,et al.  Clathrate polyhydrates of peralkylonium salts and their analogs , 1987 .

[33]  Liguang Wang,et al.  Equilibrium Conditions for Semiclathrate Hydrates Formed with CO2, N2, or CH4 in the Presence of Tri-n-butylphosphine Oxide , 2014 .

[34]  Klaus Noack,et al.  Control of gas emissions in underground coal mines , 1998 .

[35]  D. Broseta,et al.  CO2 Removal from a CO2–CH4 Gas Mixture by Clathrate Hydrate Formation Using THF and SDS as Water-Soluble Hydrate Promoters , 2013 .

[36]  Bahman Tohidi,et al.  Equilibrium Data of Hydrogen, Methane, Nitrogen, Carbon Dioxide, and Natural Gas in Semi-Clathrate Hydrates of Tetrabutyl Ammonium Bromide , 2007 .