Motion monitoring during a course of lung radiotherapy with anchored electromagnetic transponders

PurposeAnchored electromagnetic transponders for tumor motion monitoring during lung radiotherapy were clinically evaluated. First, intrafractional motion patterns were analyzed as well as their interfractional variations. Second, intra- and interfractional changes of the geometric transponder positions were investigated.Materials and methodsIntrafractional motion data from 7 patients with an upper or middle lobe tumor and three implanted transponders each was used to calculate breathing amplitudes, overall motion amount and motion midlines in three mutual perpendicular directions and three-dimensionally (3D) for 162 fractions. For 6 patients intra- and interfractional variations in transponder distances and in the size of the triangle defined by the transponder locations over the treatment course were determined.ResultsMean 3D values of all fractions were up to 4.0, 4.6 and 3.4 mm per patient for amplitude, overall motion amount and midline deviation, respectively. Intrafractional transponder distances varied with standard deviations up to 3.2 mm, while a maximal triangle shrinkage of 36.5% over 39 days was observed.ConclusionsElectromagnetic real-time motion monitoring was feasible for all patients. Detected respiratory motion was on average modest in this small cohort without lower lobe tumors, but changes in motion midline were of the same size as the amplitudes and greater midline motion can be observed in some fractions. Intra- and interfractional variations of the geometric transponder positions can be large, so for reliable motion management correlation between transponder and tumor motion needs to be evaluated per patient.ZusammenfassungZielVerankerte, elektromagnetische Transponder für die Bewegungserkennung des Tumors während der Strahlentherapie der Lunge wurden klinisch evaluiert. Dafür wurden intrafraktionelle Bewegungsmuster und ihre interfraktionellen Variationen analysiert und intra- und interfraktionelle Veränderungen der geometrischen Transponderpositionen untersucht.Material und MethodenIntrafraktionelle Bewegungsdaten von 7 Patienten mit einem Ober- oder Mittellappentumor und je drei implantierten Transpondern wurden benutzt, um Atemamplituden, Gesamtbewegungsaufkommen und Bewegungsmittellinien für die drei zueinander senkrechten Bewegungsrichtungen und dreidimensional (3D) in 162 Fraktionen zu berechnen. Für 6 Patienten wurden intra- und interfraktionelle Variationen der Transponderabstände und der Größe des von den Transponderpositionen definierten Dreiecks im Therapieverlauf bestimmt.ErgebnisseDie mittleren 3D-Werte aller Fraktionen pro Patient ergaben bis zu 4,0, 4,6 und 3,4 mm für Amplitude, Gesamtbewegungsaufkommen und Mittellinienveränderung. Intrafraktionelle Transponderabstände variierten mit Standardabweichungen von bis zu 3,2 mm, während eine maximale Verkleinerung der Dreiecksgröße um 36,5 % über 39 Tage beobachtet wurde.SchlussfolgerungElektromagnetische Echtzeit-Bewegungserkennung war für alle Patienten durchführbar. In dieser kleinen Patientenkohorte ohne Unterlappentumore war die detektierte Atembewegung im Mittel moderat. Jedoch waren Veränderungen der Bewegungsmittellinie in der gleichen Größe wie die Atemamplituden; in einzelnen Fraktionen konnten größere Mittellinienbewegungen beobachtet werden. Intra- und interfraktionelle Variationen der geometrischen Transponderpositionen können erheblich sein, so dass für ein zuverlässiges Bewegungsmanagement die Korrelation zwischen Transponder- und Tumorbewegung für jeden Patienten untersucht werden sollte.

[1]  Jose Belderbos,et al.  Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  Matthias Guckenberger,et al.  Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? , 2007, International journal of radiation oncology, biology, physics.

[3]  Uwe Oelfke,et al.  Electromagnetic real-time tumor position monitoring and dynamic multileaf collimator tracking using a Siemens 160 MLC: geometric and dosimetric accuracy of an integrated system. , 2011, International journal of radiation oncology, biology, physics.

[4]  A. Grosu,et al.  Stereotactic body radiotherapy for centrally located stage I NSCLC , 2014, Strahlentherapie und Onkologie.

[5]  Automatically gated image-guided breath-hold IMRT is a fast, precise, and dosimetrically robust treatment for lung cancer patients , 2016, Strahlentherapie und Onkologie.

[6]  S Nill,et al.  The comparative performance of four respiratory motion predictors for real-time tumour tracking , 2011, Physics in medicine and biology.

[7]  Koichi Yamazaki,et al.  Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[8]  M. V. van Herk,et al.  Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. , 2002, International journal of radiation oncology, biology, physics.

[9]  S. Korreman,et al.  Image-guided radiotherapy and motion management in lung cancer. , 2015, The British journal of radiology.

[10]  Paul J Keall,et al.  The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR. , 2016, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  H. Wakelee,et al.  Early-stage non-small cell lung cancer: surgery, stereotactic radiosurgery, and individualized adjuvant therapy. , 2014, Seminars in oncology.

[12]  Sanford L. Meeks,et al.  Expanding the use of real‐time electromagnetic tracking in radiation oncology , 2011, Journal of Applied Clinical Medical Physics.

[13]  Paul J Keall,et al.  The first clinical implementation of electromagnetic transponder-guided MLC tracking. , 2014, Medical physics.

[14]  F. Sedlmayer,et al.  DART-bid for loco-regionally advanced NSCLC , 2017, Strahlentherapie und Onkologie.

[15]  Jan-Jakob Sonke,et al.  Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. , 2009, International journal of radiation oncology, biology, physics.

[16]  A Schweikard,et al.  Multivariate respiratory motion prediction. , 2014, Physics in medicine and biology.

[17]  Martin F Fast,et al.  Dynamic tumor tracking using the Elekta Agility MLC. , 2014, Medical physics.

[18]  Geoffrey D Hugo,et al.  Interfractional positional variability of fiducial markers and primary tumors in locally advanced non-small-cell lung cancer during audiovisual biofeedback radiotherapy. , 2012, International journal of radiation oncology, biology, physics.