HiPIMS deposition of superconducting Nb thin films onto Cu substrates

[1]  X. Jiang,et al.  Superconducting NbN thin films for use in superconducting radio frequency cavities , 2020 .

[2]  A. Valente-Feliciano,et al.  Progress with Nb Hipims Films on 1.3 GHz Cu Cavities , 2020 .

[3]  C. Antoine Influence of crystalline structure on rf dissipation in superconducting niobium , 2019, Physical Review Accelerators and Beams.

[4]  O. Malyshev,et al.  IMPACT OF THE Cu SUBSTRATE SURFACE PREPARATION ON THE MORPHOLOGICAL, SUPERCONDUCTIVE AND RF PROPERTIES OF THE Nb SUPERCONDUCTIVE COATINGS * , 2019 .

[5]  Yujia Yang,et al.  Superiority of high power impulse magnetron sputtering in niobium films deposition on copper , 2018, Materials Research Express.

[6]  O. Malyshev,et al.  dc magnetometry of niobium thin film superconductors deposited using high power impulse magnetron sputtering , 2018, Physical Review Accelerators and Beams.

[7]  D. Gokhfeld,et al.  Analysis of Superconductor Magnetization Hysteresis , 2018 .

[8]  R. Lukaszew,et al.  RF Results of Nb Coated SRF Accelerator Cavities via HiPIMS , 2018 .

[9]  C. Rüssel,et al.  Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). , 2017, Ultramicroscopy.

[10]  L. Hultman,et al.  Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering , 2016 .

[11]  R. Vaglio,et al.  Thermal contact resistance at the Nb/Cu interface as a limiting factor for sputtered thin film RF superconducting cavities , 2015 .

[12]  A. V. D. Drift A PRINCIPLE GOVERNING GROWTH ORIENTATION IN VAPOUR-DEPOSITED LAYERS , 2014 .

[13]  A. Valente-Feliciano HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications , 2013 .

[14]  I. Beyerlein,et al.  Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding , 2013 .

[15]  S. Calatroni,et al.  NB COATING DEVELOPMENTS WITH HIPIMS FOR SRF APPLICATIONS , 2013 .

[16]  Gang Wang,et al.  Atomistic Calculations of Surface Energy of Spherical Copper Surfaces , 2012 .

[17]  R. Lukaszew,et al.  Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications , 2012 .

[18]  U. Helmersson,et al.  High power impulse magnetron sputtering discharge , 2012 .

[19]  C. James,et al.  Energetic condensation growth of Nb thin films , 2012 .

[20]  A. Rollett,et al.  The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites , 2012 .

[21]  X. Zhao,et al.  STRUCTURAL PROPERTIES OF NIOBIUM THIN FILMS DEPOSITED ON METALLIC SUBSTRATES* , 2012 .

[22]  A. Valente-Feliciano,et al.  Very high residual resistivity ratios of heteroepitaxial superconducting niobium films on MgO substrates , 2011 .

[23]  X. Zhao,et al.  Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate (a-plane Al2O3) , 2011 .

[24]  A. Anders DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS , 2011 .

[25]  A. Anders Discharge Physics of High Power Impulse Magnetron Sputtering , 2011 .

[26]  A. Anders A structure zone diagram including plasma based deposition and ion etching - eScholarship , 2010 .

[27]  S. Konstantinidis,et al.  High power pulsed magnetron sputtering: A review on scientific and engineering state of the art , 2010 .

[28]  J. Alami,et al.  High power pulsed magnetron sputtering: Fundamentals and applications , 2009 .

[29]  A. Valente-Feliciano,et al.  Large crystal grain niobium thin films deposited by energetic condensation in vacuum arc , 2009 .

[30]  V. Sahni,et al.  On the reliable determination of the magnetic field for first flux-line penetration in technical niobium material , 2008 .

[31]  L. Catani,et al.  Recent achievements in ultra-high vacuum arc deposition of superconducting Nb layers , 2007, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[32]  S. Calatroni 20 Years of experience with the Nb/Cu technology for superconducting cavities and perspectives for future developments , 2006 .

[33]  A. Wu,et al.  Studies of niobium thin film produced by energetic vacuum deposition , 2005 .

[34]  L. Catani,et al.  High quality superconducting niobium films produced by an ultra-high vacuum cathodic arc , 2004, cond-mat/0409271.

[35]  H. Fraser,et al.  Lattice expansion in nanocrystalline niobium thin films , 2003 .

[36]  L. Hultman,et al.  Influence of high power densities on the composition of pulsed magnetron plasmas , 2002 .

[37]  Subra Suresh,et al.  Size effects on the mechanical properties of thin polycrystalline metal films on substrates , 2002 .

[38]  A. Hernando,et al.  Transverse demagnetizing factors of long rectangular bars: I. Analytical expressions for extreme values of susceptibility , 2002 .

[39]  C. Benvenuti,et al.  CERN studies on niobium-coated 1.5 GHz copper cavities , 2001 .

[40]  C. Benvenuti,et al.  Study of the residual surface resistance of niobium films at 1.5 GHz , 2001 .

[41]  S. G. Wang,et al.  Surface energy of arbitrary crystal plane of bcc and fcc metals , 2000 .

[42]  M. Mantenieks Sputtering Threshold Energies of Heavy Ions , 1999 .

[43]  C. Benvenuti,et al.  Study of the surface resistance of superconducting niobium films at 1.5 GHz , 1999 .

[44]  H. Ji,et al.  Effect of ion bombardment on in-plane texture, surface morphology, and microstructure of vapor deposited Nb thin films , 1997 .

[45]  R. Smith,et al.  THE MECHANISM OF TEXTURE FORMATION DURING FILM GROWTH : THE ROLES OF PREFERENTIAL SPUTTERING AND SHADOWING , 1996 .

[46]  H. Windischmann Intrinsic Stress in Sputter Deposited Thin Films , 1992, Optical Interference Coatings.

[47]  N. Hilleret,et al.  Superconducting cavities produced by magnetron sputtering of niobium on copper , 1987 .

[48]  J. Cuomo,et al.  Control of thin film orientation by glancing angle ion bombardment during growth , 1986 .

[49]  C. Wu Intrinsic stress of magnetron-sputtered niobium films , 1979 .

[50]  B. Gale,et al.  Influence of instrumental aberrations on the schultz technique for the measurement of pole figures , 1960 .