The postsynaptic organization of synapses.

The postsynaptic side of the synapse is specialized to receive the neurotransmitter signal released from the presynaptic terminal and transduce it into electrical and biochemical changes in the postsynaptic cell. The cardinal functional components of the postsynaptic specialization of excitatory and inhibitory synapses are the ionotropic receptors (ligand-gated channels) for glutamate and γ-aminobutyric acid (GABA), respectively. These receptor channels are concentrated at the postsynaptic membrane and embedded in a dense and rich protein network comprised of anchoring and scaffolding molecules, signaling enzymes, cytoskeletal components, as well as other membrane proteins. Excitatory and inhibitory postsynaptic specializations are quite different in molecular organization. The postsynaptic density of excitatory synapses is especially complex and dynamic in composition and regulation; it contains hundreds of different proteins, many of which are required for cognitive function and implicated in psychiatric illness.

[1]  Y. Hata,et al.  Synaptic scaffolding molecule (S‐SCAM) membrane‐associated guanylate kinase with inverted organization (MAGI)‐2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons , 2007, Journal of neurochemistry.

[2]  Ute Moog,et al.  Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation , 2010, Nature Genetics.

[3]  T. Knöpfel,et al.  Involvement of Protein Synthesis and Degradation in Long-Term Potentiation of Schaffer Collateral CA1 Synapses , 2006, The Journal of Neuroscience.

[4]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[5]  S. Moss,et al.  GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition , 2008, Nature Reviews Neuroscience.

[6]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[7]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[8]  R. Petralia,et al.  SAP102 Is a Highly Mobile MAGUK in Spines , 2010, The Journal of Neuroscience.

[9]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[10]  Guosong Liu,et al.  Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer , 2001, Neuron.

[11]  M. Taoka,et al.  Identification of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry. , 2002, Biochemical and biophysical research communications.

[12]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[13]  T. Südhof,et al.  Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2 , 2007, Neuron.

[14]  M. J. Walsh,et al.  The Postsynaptic Density: Constituent and Associated Proteins Characterized by Electrophoresis, Immunoblotting, and Peptide Sequencing , 1992, Journal of neurochemistry.

[15]  M. Sheng,et al.  The Shank family of scaffold proteins. , 2000, Journal of cell science.

[16]  J. Isaac,et al.  mGluR5 and NMDA Receptors Drive the Experience- and Activity-Dependent NMDA Receptor NR2B to NR2A Subunit Switch , 2011, Neuron.

[17]  D. Muller,et al.  Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin , 2010, Proceedings of the National Academy of Sciences.

[18]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[19]  M. Kennedy,et al.  The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein , 1992, Neuron.

[20]  A. Bush,et al.  The neurobiology of zinc in health and disease , 2005, Nature Reviews Neuroscience.

[21]  R. Huganir,et al.  SynGAP: a Synaptic RasGAP that Associates with the PSD-95/SAP90 Protein Family , 1998, Neuron.

[22]  G. Turrigiano,et al.  PSD-95 and PSD-93 Play Critical But Distinct Roles in Synaptic Scaling Up and Down , 2011, The Journal of Neuroscience.

[23]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[24]  Michael D. Ehlers,et al.  Structural plasticity with preserved topology in the postsynaptic protein network , 2008, Proceedings of the National Academy of Sciences.

[25]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.

[26]  M. Sheng,et al.  Gephyrin Interacts with Dynein Light Chains 1 and 2, Components of Motor Protein Complexes , 2002, The Journal of Neuroscience.

[27]  G. Multhaup,et al.  Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein , 1992, Neuron.

[28]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[29]  S. Grant,et al.  Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome , 2006, Journal of neurochemistry.

[30]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[31]  P. Worley,et al.  Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin , 1999, Neuron.

[32]  T. Südhof,et al.  Neurexins Physically and Functionally Interact with GABAA Receptors , 2010, Neuron.

[33]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature neuroscience.

[34]  Wei Feng,et al.  Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density , 2009, Nature Reviews Neuroscience.

[35]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[36]  C. Seidenbecher,et al.  Protein components of a rat brain synaptic junctional protein preparation. , 1996, Brain research. Molecular brain research.

[37]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[38]  Xiaobing Chen,et al.  Distribution of Postsynaptic Density (PSD)-95 and Ca2+/Calmodulin-Dependent Protein Kinase II at the PSD , 2003, The Journal of Neuroscience.

[39]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[40]  S. Dudek,et al.  Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice , 2007, Nature.

[41]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[42]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[43]  S. Grant,et al.  Opposing effects of PSD‐93 and PSD‐95 on long‐term potentiation and spike timing‐dependent plasticity , 2008, The Journal of physiology.

[44]  M. Sheng,et al.  Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins , 1996, Neuron.

[45]  Ann Marie Craig,et al.  Neurexin–neuroligin signaling in synapse development , 2007, Current Opinion in Neurobiology.

[46]  M. Sheng,et al.  Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95 , 2007, Neuron.

[47]  M. Sheng,et al.  Molecular mechanisms of dendritic spine morphogenesis , 2006, Current Opinion in Neurobiology.

[48]  Xiaobing Chen,et al.  Life Inside a Thin Section: Tomography , 2008, The Journal of Neuroscience.

[49]  B. Voss,et al.  SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. , 1993, The Journal of biological chemistry.

[50]  R. Nicoll,et al.  Functional dependence of neuroligin on a new non-PDZ intracellular domain , 2011, Nature Neuroscience.

[51]  Mark F Bear,et al.  Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1 , 2008, The Journal of Neuroscience.

[52]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[53]  M. Sheng,et al.  Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization , 2010, Cell.

[54]  Erin M. Schuman,et al.  Activity-dependent dynamics and sequestration of proteasomes in dendritic spines , 2006, Nature.

[55]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[56]  H. Schindelin,et al.  Complex Formation between the Postsynaptic Scaffolding Protein Gephyrin, Profilin, and Mena: A Possible Link to the Microfilament System , 2003, The Journal of Neuroscience.

[57]  M. Sheng,et al.  Autophosphorylated CaMKIIα Acts as a Scaffold to Recruit Proteasomes to Dendritic Spines , 2010, Cell.

[58]  E. Schuman,et al.  Cadherins and synaptic plasticity. , 2008, Current opinion in cell biology.

[59]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[60]  M. Sheng,et al.  Degradation of Postsynaptic Scaffold GKAP and Regulation of Dendritic Spine Morphology by the TRIM3 Ubiquitin Ligase in Rat Hippocampal Neurons , 2010, PloS one.

[61]  Eunjoon Kim,et al.  Synaptic adhesion molecules and PSD-95 , 2008, Progress in Neurobiology.

[62]  Jean-Claude Béïque,et al.  PSD‐95 regulates synaptic transmission and plasticity in rat cerebral cortex , 2003, The Journal of physiology.

[63]  M. Cuccaro,et al.  Multiple rare SAPAP3 missense variants in trichotillomania and OCD , 2009, Molecular Psychiatry.

[64]  M. Sheng,et al.  GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules , 1997, The Journal of cell biology.

[65]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[66]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[67]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[68]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[69]  G. Collingridge,et al.  Promiscuous Interactions between AMPA-Rs and MAGUKs , 2006, Neuron.

[70]  Yitao Liu,et al.  Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor- PSD-95 Protein Interactions , 2002, Science.

[71]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[72]  R. Malenka,et al.  Destabilization of the Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and Synaptic Plasticity , 2008, Neuron.

[73]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[74]  Iain D G Campuzano,et al.  Proteomic Analysis of in Vivo Phosphorylated Synaptic Proteins* , 2005, Journal of Biological Chemistry.

[75]  C. Keller,et al.  Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. , 2004, Pharmacology & therapeutics.

[76]  Morgan Sheng,et al.  Deconstruction for Reconstruction: The Role of Proteolysis in Neural Plasticity and Disease , 2011, Neuron.

[77]  R. Petralia,et al.  MAGUKs, Synaptic Development, and Synaptic Plasticity , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[78]  H. Gainer,et al.  PSD-95 Is Required to Sustain the Molecular Organization of the Postsynaptic Density , 2011, The Journal of Neuroscience.

[79]  G. Feng,et al.  Gephyrin-Independent Clustering of Postsynaptic GABAA Receptor Subtypes , 2001, Molecular and Cellular Neuroscience.

[80]  Alma L. Burlingame,et al.  Comprehensive Identification of Phosphorylation Sites in Postsynaptic Density Preparations*S , 2006, Molecular & Cellular Proteomics.

[81]  Y. Takai,et al.  SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. , 1997, The Journal of biological chemistry.

[82]  P. Siekevitz The postsynaptic density : A possible role in long-lasting effects in the central nervous system ( theory / protein modifications / structure change / synaptic strength ) , 2022 .

[83]  J. Isaac,et al.  Casein Kinase 2 Regulates the NR2 Subunit Composition of Synaptic NMDA Receptors , 2010, Neuron.

[84]  S. Swamy,et al.  Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks , 2009, Science Signaling.

[85]  R. Weinberg,et al.  Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex , 1997, Neuroscience Letters.

[86]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[87]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[88]  A. Craig,et al.  Synaptic organizing complexes , 2011, Current Opinion in Neurobiology.

[89]  Yasunori Hayashi,et al.  The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure , 2007, Proceedings of the National Academy of Sciences.

[90]  M. Pangalos,et al.  Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts , 2006, The EMBO journal.

[91]  S. Jamain,et al.  Neuroligin 2 is exclusively localized to inhibitory synapses. , 2004, European journal of cell biology.

[92]  P. Paoletti,et al.  Synaptic neurotransmitter-gated receptors. , 2012, Cold Spring Harbor perspectives in biology.

[93]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[94]  杉山 佳子 Determination of absolute protein numbers in single synapses by a GFP-based calibration technique , 2005 .

[95]  D. Richter,et al.  Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD‐95 , 2004, Journal of neurochemistry.

[96]  M. Sheng,et al.  Structure and different conformational states of native AMPA receptor complexes , 2005, Nature.

[97]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[98]  John R. Yates,et al.  Neural Palmitoyl-Proteomics Reveals Dynamic Synaptic Palmitoylation , 2008, Nature.

[99]  Thomas Bourgeron,et al.  Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders , 2007, Nature Genetics.

[100]  Y. Goda,et al.  Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy , 2008, Nature Reviews Neuroscience.

[101]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[102]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[103]  Thomas A Neubert,et al.  Identification and Verification of Novel Rodent Postsynaptic Density Proteins*S , 2004, Molecular & Cellular Proteomics.

[104]  Eckart D Gundelfinger,et al.  Proteomics Analysis of Rat Brain Postsynaptic Density , 2004, Journal of Biological Chemistry.

[105]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[106]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[107]  Zhen Yan,et al.  Delivery of GABAARs to Synapses Is Mediated by HAP1-KIF5 and Disrupted by Mutant Huntingtin , 2010, Neuron.

[108]  R. Malinow,et al.  PSD-95 is required for activity-driven synapse stabilization , 2007, Proceedings of the National Academy of Sciences.

[109]  M. Sheng,et al.  Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  T. Südhof,et al.  Synaptic cell adhesion. , 2012, Cold Spring Harbor perspectives in biology.

[111]  Masahiko Watanabe,et al.  Input-Specific Intrasynaptic Arrangements of Ionotropic Glutamate Receptors and Their Impact on Postsynaptic Responses , 2009, The Journal of Neuroscience.

[112]  Sue-Hyun Lee,et al.  Synaptic Protein Degradation Underlies Destabilization of Retrieved Fear Memory , 2008, Science.

[113]  D. Bredt,et al.  Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. , 2005, Annual review of biochemistry.

[114]  T. Südhof,et al.  Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons , 2009, The Journal of Neuroscience.

[115]  Lars Funke,et al.  Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins , 2006, Neuron.

[116]  D. Schmitz,et al.  Muskelin Regulates Actin Filament- and Microtubule-Based GABAA Receptor Transport in Neurons , 2011, Neuron.

[117]  M. Kennedy,et al.  A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II , 1998, Neuron.

[118]  M. Sheng,et al.  PDZ domain proteins of synapses , 2004, Nature Reviews Neuroscience.

[119]  M. Hoon,et al.  Neuroligin 2 Controls the Maturation of GABAergic Synapses and Information Processing in the Retina , 2009, The Journal of Neuroscience.

[120]  S. Moss,et al.  The role of GABAAR phosphorylation in the construction of inhibitory synapses and the efficacy of neuronal inhibition. , 2009, Biochemical Society transactions.

[121]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[122]  S. Grant,et al.  Neuroproteomics: understanding the molecular organization and complexity of the brain , 2009, Nature Reviews Neuroscience.

[123]  R. Malinow,et al.  Postsynaptic Density 95 controls AMPA Receptor Incorporation during Long-Term Potentiation and Experience-Driven Synaptic Plasticity , 2004, The Journal of Neuroscience.

[124]  M. Waxham,et al.  Structure and composition of the postsynaptic density during development , 2010, The Journal of comparative neurology.

[125]  M. Sheng,et al.  Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Michael R Kreutz,et al.  Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation , 2011, The EMBO journal.

[127]  P. Scheiffele,et al.  Genetics and Cell Biology of Building Specific , 2010 .

[128]  N. Brose Synaptogenic Proteins and Synaptic Organizers: “Many Hands Make Light Work” , 2009, Neuron.

[129]  P. Scheiffele,et al.  Neuroligin‐3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses , 2007, The European journal of neuroscience.

[130]  M. Sheng,et al.  Quaternary Structure, Protein Dynamics, and Synaptic Function of SAP97 Controlled by L27 Domain Interactions , 2004, Neuron.

[131]  S. Okabe,et al.  The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function , 2003, Current Opinion in Neurobiology.

[132]  P Siekevitz,et al.  The structure of postsynaptic densities isolated from dog cerebral cortex: II. characterization and arrangement of some of the major proteins within the structure , 1977, The Journal of cell biology.

[133]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[134]  M. Passafaro,et al.  Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation , 2007, Neuron.

[135]  M. Sheng,et al.  Targeted Protein Degradation and Synapse Remodeling by an Inducible Protein Kinase , 2003, Science.

[136]  T. Boeckers,et al.  ProSAP/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease , 2002, Journal of neurochemistry.

[137]  Peter R. Baker,et al.  Quantitative Analysis of Synaptic Phosphorylation and Protein Expression*S , 2008, Molecular & Cellular Proteomics.

[138]  K. Roche,et al.  Regulation of NMDA receptors by phosphorylation , 2007, Neuropharmacology.

[139]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[140]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[141]  J. Hell,et al.  Regulation of GluR1 by the A-Kinase Anchoring Protein 79 (AKAP79) Signaling Complex Shares Properties with Long-Term Depression , 2002, The Journal of Neuroscience.

[142]  S. Grant,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.

[143]  S. Löwel,et al.  Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina , 2011, Proceedings of the National Academy of Sciences.

[144]  S. Lévi,et al.  Gephyrin Is Critical for Glycine Receptor Clustering But Not for the Formation of Functional GABAergic Synapses in Hippocampal Neurons , 2004, The Journal of Neuroscience.

[145]  C. Cotman,et al.  ISOLATION OF POSTSYNAPTIC DENSITIES FROM RAT BRAIN , 1974, The Journal of cell biology.

[146]  Eckart D Gundelfinger,et al.  An Architectural Framework That May Lie at the Core of the Postsynaptic Density , 2006, Science.

[147]  Robert C. Malenka,et al.  Molecular Dissociation of the Role of PSD-95 in Regulating Synaptic Strength and LTD , 2008, Neuron.

[148]  J. Hell,et al.  A Developmental Change in NMDA Receptor-Associated Proteins at Hippocampal Synapses , 2000, The Journal of Neuroscience.

[149]  M. Kennedy,et al.  Citron Binds to PSD-95 at Glutamatergic Synapses on Inhibitory Neurons in the Hippocampus , 1999, The Journal of Neuroscience.

[150]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[151]  R. Petralia,et al.  Ontogeny of postsynaptic density proteins at glutamatergic synapses , 2005, Molecular and Cellular Neuroscience.

[152]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[153]  L. Van Aelst,et al.  Rho GTPases, dendritic structure, and mental retardation. , 2005, Journal of neurobiology.

[154]  T. Soderling,et al.  Activity-Dependent Synaptogenesis: Regulation by a CaM-Kinase Kinase/CaM-Kinase I/βPIX Signaling Complex , 2008, Neuron.

[155]  L. Vinadé,et al.  Identification of novel phosphorylation sites on postsynaptic density proteins. , 2004, Biochemical and biophysical research communications.

[156]  O. Prange,et al.  Neuroligins Mediate Excitatory and Inhibitory Synapse Formation , 2005, Journal of Biological Chemistry.

[157]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[158]  Bernardo L Sabatini,et al.  Distinct Domains within PSD-95 Mediate Synaptic Incorporation, Stabilization, and Activity-Dependent Trafficking , 2009, The Journal of Neuroscience.

[159]  P Siekevitz,et al.  Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities , 1980, The Journal of cell biology.

[160]  M. Sheng,et al.  Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP , 2001, Neuron.

[161]  D. Selkoe,et al.  Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide , 2007, Nature Reviews Molecular Cell Biology.

[162]  R. Weinberg,et al.  Laminar Organization of the NMDA Receptor Complex within the Postsynaptic Density , 2001, The Journal of Neuroscience.

[163]  M. Ehlers,et al.  Postsynaptic Positioning of Endocytic Zones and AMPA Receptor Cycling by Physical Coupling of Dynamin-3 to Homer , 2007, Neuron.

[164]  Y. Jan,et al.  Changing subunit composition of heteromeric NMDA receptors during development of rat cortex , 1994, Nature.

[165]  Xiaobing Chen,et al.  Distribution of the scaffolding proteins PSD-95, PSD-93, and SAP97 in isolated PSDs , 2006, Brain cell biology.

[166]  R. Weinberg,et al.  Regulation of Dendritic Spine Morphogenesis by Insulin Receptor Substrate 53, a Downstream Effector of Rac1 and Cdc42 Small GTPases , 2005, The Journal of Neuroscience.

[167]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[168]  R. Malenka,et al.  A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors , 2009, Nature Neuroscience.

[169]  Chunyan Tang,et al.  The postsynaptic density proteins homer and shank form a polymeric network structure , 2010, Neurosciences research.

[170]  Mark F Bear,et al.  Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. , 2012, Cold Spring Harbor perspectives in biology.

[171]  M. Sheng,et al.  Regulated RalBP1 Binding to RalA and PSD-95 Controls AMPA Receptor Endocytosis and LTD , 2009, PLoS biology.

[172]  E. Réal,et al.  Analysis of synaptic ultrastructure without fixative using high‐pressure freezing and tomography , 2006, The European journal of neuroscience.

[173]  Robert J. Harvey,et al.  Gephyrin: where do we stand, where do we go? , 2008, Trends in Neurosciences.

[174]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[175]  K. Roche,et al.  Molecular determinants of NMDA receptor internalization , 2001, Nature Neuroscience.

[176]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[177]  R. Huganir,et al.  PDZ domains in synapse assembly and signalling. , 2000, Trends in cell biology.

[178]  Shigeo Okabe,et al.  Differential Control of Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms , 2006, The Journal of Neuroscience.

[179]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[180]  Douglas J Slotta,et al.  Composition of the Synaptic PSD-95 Complex*S , 2007, Molecular & Cellular Proteomics.

[181]  Neal Sweeney,et al.  Synaptic Strength Regulated by Palmitate Cycling on PSD-95 , 2002, Cell.

[182]  Kai Chang,et al.  The Synaptic Localization of NR2B-Containing NMDA Receptors Is Controlled by Interactions with PDZ Proteins and AP-2 , 2005, Neuron.

[183]  Daniel Choquet,et al.  New Concepts in Synaptic Biology Derived from Single-Molecule Imaging , 2008, Neuron.

[184]  Xiaobing Chen,et al.  Mass of the postsynaptic density and enumeration of three key molecules. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[185]  M. Kneussel,et al.  Activated radixin is essential for GABAA receptor α5 subunit anchoring at the actin cytoskeleton , 2006, The EMBO journal.

[186]  M. Sheng,et al.  Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking , 2005, Neuron.

[187]  Xiaobing Chen,et al.  Organization of the core structure of the postsynaptic density , 2008, Proceedings of the National Academy of Sciences.

[188]  M. Bear,et al.  Ubiquitination Regulates PSD-95 Degradation and AMPA Receptor Surface Expression , 2003, Neuron.

[189]  Bernardo L Sabatini,et al.  Synapses and Alzheimer's disease. , 2012, Cold Spring Harbor perspectives in biology.

[190]  D. Choquet,et al.  Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses , 2006, Science's STKE.

[191]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[192]  R. Petralia,et al.  Selective Expression of ErbB4 in Interneurons, But Not Pyramidal Cells, of the Rodent Hippocampus , 2009, The Journal of Neuroscience.

[193]  T. Südhof,et al.  CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[194]  D. Srivastava,et al.  Convergent CaMK and RacGEF signals control dendritic structure and function. , 2008, Trends in cell biology.

[195]  Y. Jan,et al.  Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases , 1995, Nature.

[196]  P. Worley,et al.  Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins , 1999, Neuron.

[197]  F. Bloom,et al.  Isolation of synaptic junctional complexes from rat brain. , 1973, Brain research.

[198]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[199]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[200]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[201]  C. Hoogenraad,et al.  Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum*S , 2006, Molecular & Cellular Proteomics.

[202]  T. Bonhoeffer,et al.  A Balance of Protein Synthesis and Proteasome-Dependent Degradation Determines the Maintenance of LTP , 2006, Neuron.