Beryllium incorporation in InGaAsN quantum well improves the optical properties of this dilute nitride material significantly. After annealing, the intensity of the photoluminescence of this new dilute nitride material (InGaAsNBe) is about 20 times higher and its wavelength is even 25 nm longer. After a certain time of this heat treatment, the photoluminescence quenched slowly for InGaAsN structures because of the strain relaxation due to the thermal activation. The photoluminescence of InGaAsNBe increased rapidly and show no saturation even after a very long time of annealing. Beryllium incorporation in InGaAs which was grew at the same temperature as dilute nitrides also improves the optic properties. But the improvement for InGaAsNBe is 10 times more than for InGaAsBe. Laser processing based on the new InGaAsNBe structures resulted in one half of the threshold current density compare to conventional InGaAsN.