Smart Morphing Wing: Optimization of Distributed Piezoelectric Actuation

Distributed actuators are inherently multifunctional because they have the potential to simultaneously contribute to the actuation and load-carrying functions of a system. These characteristics are...

[1]  Ron Barrett,et al.  Post-Buckled Precompressed Techniques in Adaptive Aerostructures: An Overview , 2010 .

[2]  Alexander Hasse,et al.  Design of compliant mechanisms with selective compliance , 2009 .

[3]  G. Meng,et al.  Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method , 2006 .

[4]  Andres F. Arrieta,et al.  Aerostructural Performance of Distributed Compliance Morphing Wings: Wind Tunnel and Flight Testing , 2016 .

[5]  Andres F. Arrieta,et al.  Performance of a Three-Dimensional Morphing Wing and Comparison with a Conventional Wing , 2014 .

[6]  J. Peiro,et al.  Camber effects in the dynamic aeroelasticity of compliant airfoils , 2009 .

[7]  Osgar John Ohanian,et al.  Design and Flight Test of a Morphing UAV Flight Control System , 2013 .

[8]  Michael I. Friswell,et al.  Fluid/Structure-Interaction Analysis of the Fish-Bone-Active-Camber Morphing Concept , 2015 .

[9]  Michael I. Friswell,et al.  Hierarchical modeling and optimization of camber morphing airfoil , 2015 .

[10]  Michael I. Friswell,et al.  Aerodynamic optimisation of a camber morphing aerofoil , 2015 .

[11]  Dewey H. Hodges,et al.  Introduction to Structural Dynamics and Aeroelasticity: Aeroelastic Flutter , 2011 .

[12]  Rolf Paradies,et al.  Active wing design with integrated flight control using piezoelectric macro fiber composites , 2009 .

[13]  D. Owens Weissinger's model of the nonlinear lifting-line method for aircraft design , 1998 .

[14]  Gerald Kress,et al.  Corrugated laminate homogenization model , 2010 .

[15]  Andres F. Arrieta,et al.  Variable stiffness material and structural concepts for morphing applications , 2013 .

[16]  Andres F. Arrieta,et al.  Planform, aero-structural and flight control optimization for tailless morphing aircraft , 2018, Journal of Intelligent Material Systems and Structures.

[17]  L. F. Campanile,et al.  The Belt-Rib Concept: A Structronic Approach to Variable Camber , 2000 .

[18]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[19]  Michael I. Friswell,et al.  Implementation of a Continuous-Inextensible-Surface Piezocomposite Airfoil , 2012 .

[20]  Mihir Mistry,et al.  Actuation Requirements of a Warp-Induced Variable Twist Rotor Blade , 2011 .

[21]  Ephrahim Garcia,et al.  Morphing unmanned aerial vehicles , 2011 .

[22]  Terrence A. Weisshaar,et al.  Morphing Aircraft Systems: Historical Perspectives and Future Challenges , 2013 .

[23]  G. Box,et al.  Least Squares for Response Surface Work , 2006 .

[24]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[25]  Daniel J. Inman,et al.  Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices , 2012 .

[26]  Andres F. Arrieta,et al.  Aero-Structural Optimization of Three-Dimensional Adaptive Wings with Embedded Smart Actuators , 2014 .

[27]  Daniel J. Inman,et al.  Wing morphing design using macro-fiber composites , 2013 .

[28]  Manfred Morari,et al.  Design, realization and structural testing of a compliant adaptable wing , 2015 .