Current—voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na‐selective membrane.

[1]  D. Erlij,et al.  Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport , 1973, The Journal of physiology.

[2]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[3]  R. Thomas,et al.  Electrogenic sodium pump in nerve and muscle cells. , 1972, Physiological reviews.

[4]  D. Erlij,et al.  Sodium uptake by the outside surface of frog skin. , 1971, The Journal of physiology.

[5]  B. Lindemann,et al.  Design of a fast voltage clamp for biological membranes, using discontinuous feedback. , 1974, The Review of scientific instruments.

[6]  B. Lindemann,et al.  Chemical stimulation of Na + current through the outer surface of frog skin epithelium. , 1974, Biochimica et biophysica acta.

[7]  P. Curran,et al.  Intracellular Electrical Potentials in Frog Skin , 1965, The Journal of general physiology.

[8]  S. I. Helman,et al.  In vitro Techniques for Avoiding Edge Damage in Studies of Frog Skin , 1971, Science.

[9]  L. Share,et al.  EFFECT OF POTASSIUM ON THE MOVEMENT OF WATER ACROSS THE ISOLATED AMPHIBIAN SKIN. , 1965, Acta physiologica Scandinavica.

[10]  A. Mauro,et al.  Equivalent Circuits as Related to Ionic Systems. , 1963, Biophysical journal.

[11]  H. Ussing,et al.  Osmotic behaviour of the epithelial cells of frog skin. , 1961, Acta physiologica Scandinavica.

[12]  V KOEFOED-JOHNSEN,et al.  The nature of the frog skin potential. , 1958, Acta physiologica Scandinavica.

[13]  B. Lindemann,et al.  Theory of a membrane‐voltage clamp with discontinuous feedback through a pulsed current clamp , 1974 .

[14]  B. Lindemann,et al.  Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. , 1977, Science.

[15]  M. Fernández,et al.  The Penetration of Sodium into the Epithelium of the Frog Skin , 1970, The Journal of general physiology.

[16]  B. Lindemann,et al.  Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion. , 1972, Biophysical journal.

[17]  B. Lindemann,et al.  Delayed voltage responses to fast changes of (Na) 0 at the outer surface of frog skin epithelium. , 1972, Biomembranes.

[18]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[19]  B. Lindemann Letter: Impalement artifacts in microelectrode recordings of epithelial membrane potentials. , 1975, Biophysical journal.

[20]  T. Biber,et al.  Exposure of the Isolated Frog Skin to High Potassium Concentrations at the Internal Surface , 1965, The Journal of general physiology.

[21]  J. Magness Chemical Stimulation , 1920, Botanical Gazette.

[22]  E. Windhager,et al.  NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. , 1964, Acta physiologica Scandinavica.

[23]  Peter F. Curran,et al.  Direct Measurement of Uptake of Sodium at the Outer Surface of the Frog Skin , 1970, The Journal of general physiology.

[24]  T. Biber,et al.  Influence of Transepithelial Potential Difference on the Sodium Uptake at the Outer Surface of the Isolated Frog Skin , 1973, The Journal of general physiology.