An improved finite element method formulation for the analysis of nonlinear anisotropic dielectric waveguides

An efficient and accurate vectorial finite element formulation is presented for the analysis of dielectric waveguides with arbitrary cross-sections, nonlinear behaviors, and anisotropic materials. Remarkable improvements in solution precision and computational effort have been obtained by evaluating new coefficients used in the matrix assembling procedure of the method. The influence of the mesh division is discussed and comparison with a scalar finite element approach is reported. >

[1]  G. Cambrell,et al.  Simulation of strong nonlinear effects in optical waveguides , 1993 .

[2]  Anand Gopinath,et al.  Analysis of dielectric guides by vector transverse magnetic field finite elements , 1993 .

[3]  S. Selleri,et al.  Full-vectorial and scalar solutions of nonlinear optical fibers , 1993 .

[4]  C. Pask,et al.  Variational and finite element analyses of nonlinear strip optical waveguides , 1992 .

[5]  M. Koshiba,et al.  Self-localization and spontaneous symmetry breaking of optical fields propagating in strongly nonlinear channel waveguides: limitations of the scalar field approximation , 1992 .

[6]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[7]  George I. Stegeman,et al.  Waveguides and Fibers for Nonlinear Optics , 1989, Nonlinear Optical Properties of Materials.

[8]  Masanori Koshiba,et al.  Finite-element formalism for nonlinear slab-guided waves , 1988 .

[9]  George I. Stegeman,et al.  Third order nonlinear integrated optics , 1988 .

[10]  J. Penman,et al.  Self-adaptive mesh generation technique for the finite-element method , 1987 .

[11]  Masanori Koshiba,et al.  Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component , 1986 .

[12]  G. Stegeman,et al.  Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media , 1985 .

[13]  Masanori Koshiba,et al.  Improved Finite-Element Formulation in Terms of the Magnetic Field Vector for Dielectric Waveguides , 1985 .

[14]  B. M. A. Rahman,et al.  Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .

[15]  A. Konrad,et al.  Vector Variational Formulation of Electromagnetic Fields in Anisotropic Media , 1976 .

[16]  S. Selleri,et al.  FINITE ELEMENT ANALYSIS OF TE AND TM MODES IN NONLINEAR PLANAR WAVEGUIDES , 1994 .

[17]  Yilong Lu,et al.  An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides , 1993 .

[18]  Fa Fernandez,et al.  Application of adaptive remeshing techniques to the finite element analysis of nonlinear optical waveguides , 1990 .