Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite

The electronic structure and properties of the orthorhombic phase of the $\mathrm{CH}{}_{3}\mathrm{NH}{}_{3}\mathrm{PbI}{}_{3}$ perovskite are computed with density functional theory. The structure, optimized using a van der Waals functional, reproduces closely the unit cell volume. The experimental band gap is reproduced accurately by combining spin-orbit effects and a hybrid functional in which the fraction of exact exchange is tuned self-consistently to the optical dielectric constant. Including spin-orbit coupling strongly reduces the anisotropy of the effective mass tensor, predicting a low electron effective mass in all crystal directions. The computed binding energy of the unrelaxed exciton agrees with experimental data, and the values found imply a fast exciton dissociation at ambient temperature. Also polaron masses for the separated carriers are estimated. The values of all these parameters agree with recent indications that fast dynamics and large carrier diffusion lengths are key in the high photovoltaic efficiencies shown by these materials.

[1]  J. Conesa Modeling with Hybrid Density Functional Theory the Electronic Band Alignment at the Zinc Oxide–Anatase Interface , 2012 .

[2]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[3]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[4]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[5]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[6]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[7]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[8]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[9]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[10]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[11]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[12]  G. Galli,et al.  Self-consistent hybrid functional for condensed systems , 2014, 1501.03184.

[13]  H. Mashiyama,et al.  Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .

[14]  Teruya Ishihara,et al.  Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4- Octahedra , 1994 .

[15]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[16]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[17]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[19]  X. Gong,et al.  First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites , 2013, 1309.0070.

[20]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[21]  Micael J. T. Oliveira,et al.  Density-based mixing parameter for hybrid functionals , 2010, 1009.4303.

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  David Vanderbilt,et al.  First-principles approach to insulators in finite electric fields. , 2002, Physical review letters.

[25]  Ian P. Swainson,et al.  Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 , 2003 .

[26]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[27]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[28]  Xavier Gonze,et al.  Berry-phase treatment of the homogeneous electric field perturbation in insulators , 2001 .

[29]  J. Devreese,et al.  Fröhlich polaron and bipolaron: recent developments , 2009, 0904.3682.

[30]  P. Sautet,et al.  Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT , 2014 .

[31]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[32]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[33]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[34]  A. Pasquarello,et al.  Defect levels through hybrid density functionals: Insights and applications , 2011 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[37]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[38]  R. Knox,et al.  Theory of excitons , 1963 .

[39]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[40]  J. Conesa Band structures and nitrogen doping effects in zinc titanate photocatalysts , 2013 .

[41]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[42]  Martin,et al.  Theoretical study of band offsets at semiconductor interfaces. , 1987, Physical review. B, Condensed matter.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[45]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[46]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[47]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.