NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy

[1]  Youngil Lee,et al.  PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes , 2015, PloS one.

[2]  Hyun-Seok Kim,et al.  Nitric Oxide Induction of Parkin Translocation in PTEN-induced Putative Kinase 1 (PINK1) Deficiency , 2015, The Journal of Biological Chemistry.

[3]  W. Ding,et al.  Mitochondrial dynamics and mitochondrial quality control , 2014, Redox biology.

[4]  S. Campello,et al.  Corrigendum: AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 (Cell Death and Differentiation (2015) 22, (419-432) doi: 10.1038/cdd.2014.139) , 2015 .

[5]  S. Campello,et al.  AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 , 2015, Cell Death and Differentiation.

[6]  J. Klein-Seetharaman,et al.  Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling , 2014, Naunyn-Schmiedeberg's Archives of Pharmacology.

[7]  D. Kass,et al.  Parkin‐independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain , 2014, The EMBO journal.

[8]  G. Wells,et al.  PMI: A ΔΨm Independent Pharmacological Regulator of Mitophagy , 2014, Chemistry & biology.

[9]  T. Lagache,et al.  Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling , 2014, Science.

[10]  J. Lane,et al.  Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation , 2014, Journal of Cell Science.

[11]  J. Klein-Seetharaman,et al.  mitochondrial pathway for biosynthesis of lipid mediators , 2014, Nature chemistry.

[12]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[13]  T. Langer,et al.  Stress‐induced OMA1 activation and autocatalytic turnover regulate OPA1‐dependent mitochondrial dynamics , 2014, The EMBO journal.

[14]  J. James,et al.  Loss of iron triggers PINK1/Parkin-independent mitophagy , 2013, EMBO reports.

[15]  M. Alavi,et al.  Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics , 2013, Molecular Neurodegeneration.

[16]  Simon C Watkins,et al.  Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells , 2013, Nature Cell Biology.

[17]  Jean-Pierre Mazat,et al.  Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. , 2013, Journal of the American Chemical Society.

[18]  L. Pellegrini,et al.  The dynamin GTPase OPA1: more than mitochondria? , 2013, Biochimica et biophysica acta.

[19]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[20]  W. Dowhan,et al.  Cardiolipin-dependent Reconstitution of Respiratory Supercomplexes from Purified Saccharomyces cerevisiae Complexes III and IV* , 2012, The Journal of Biological Chemistry.

[21]  J. Klein-Seetharaman,et al.  Dual Function of Mitochondrial Nm23-H4 Protein in Phosphotransfer and Intermembrane Lipid Transfer , 2012, The Journal of Biological Chemistry.

[22]  D. Green,et al.  Mitochondria and cell signalling , 2012, Journal of Cell Science.

[23]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[24]  H. McBride,et al.  A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes , 2012, Current Biology.

[25]  B. Tu,et al.  Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation , 2011, Molecular biology of the cell.

[26]  D. Klionsky,et al.  Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae , 2011, The Journal of cell biology.

[27]  D. Klionsky,et al.  Mitochondria autophagy in yeast. , 2011, Antioxidants & redox signaling.

[28]  G. Dorn,et al.  Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming* , 2010, The Journal of Biological Chemistry.

[29]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[30]  D. Klionsky,et al.  A genomic screen for yeast mutants defective in mitophagy , 2010, Autophagy.

[31]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[32]  A. M. van der Bliek,et al.  Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells , 2009, The Journal of cell biology.

[33]  D. Klionsky,et al.  Monitoring mitophagy in yeast: The Om45-GFP processing assay , 2009, Autophagy.

[34]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[35]  D. Klionsky,et al.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy. , 2009, Developmental cell.

[36]  David S. Park,et al.  Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission* , 2009, Journal of Biological Chemistry.

[37]  J. Pouysségur,et al.  Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains , 2009, Molecular and Cellular Biology.

[38]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[39]  D. Klionsky,et al.  Mitophagy in Yeast Occurs through a Selective Mechanism* , 2008, Journal of Biological Chemistry.

[40]  U. Schlattner,et al.  The Nucleoside Diphosphate Kinase D (NM23-H4) Binds the Inner Mitochondrial Membrane with High Affinity to Cardiolipin and Couples Nucleotide Transfer with Respiration* , 2008, Journal of Biological Chemistry.

[41]  H. Sandoval,et al.  Essential role for Nix in autophagic maturation of erythroid cells , 2008, Nature.

[42]  Cong-Zhao Zhou,et al.  Structure of Ynk1 from the yeast Saccharomyces cerevisiae. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[43]  Qing Zhao,et al.  Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. , 2008, Free radical biology & medicine.

[44]  James A J Fitzpatrick,et al.  Fluorogen-activating single-chain antibodies for imaging cell surface proteins , 2008, Nature Biotechnology.

[45]  R. Epand,et al.  Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes. , 2007, Biophysical journal.

[46]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[47]  Qing Zhao,et al.  Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors , 2005, Nature chemical biology.

[48]  N. Pfanner,et al.  Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins , 2004, The EMBO journal.

[49]  D. Pain,et al.  Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space. , 2003, The Biochemical journal.

[50]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[51]  J. Janin,et al.  The Human nm23-H4 Gene Product Is a Mitochondrial Nucleoside Diphosphate Kinase* , 2000, The Journal of Biological Chemistry.

[52]  M. L. Greenberg,et al.  The biosynthesis and functional role of cardiolipin. , 2000, Progress in lipid research.

[53]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[54]  G. Paradies,et al.  Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria. , 1988, Biochimica et biophysica acta.

[55]  S. Pande,et al.  An essential requirement of cardiolipin for mitochondrial carnitine acylcarnitine translocase activity. Lipid requirement of carnitine acylcarnitine translocase. , 1986, European journal of biochemistry.

[56]  G. Béréziat,et al.  Changes of fatty acid composition of phospholipids and lipid structural order in rat liver mitochondrial membrane subsequent to galactosamine intoxication. Effect of clofibrate. , 1986, Biochimica et biophysica acta.

[57]  K Beyer,et al.  ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. , 1985, Biochemistry.

[58]  J. Lambeth,et al.  Cytochrome P-450scc-phospholipid interactions. Evidence for a cardiolipin binding site and thermodynamics of enzyme interactions with cardiolipin, cholesterol, and adrenodoxin. , 1983, The Journal of biological chemistry.

[59]  H. Kolbe,et al.  The mitochondrial phosphate carrier has an essential requirement for cardiolipin , 1982, FEBS letters.

[60]  R. Capaldi,et al.  Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. E. Green,et al.  Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. , 1981, The Journal of biological chemistry.

[62]  A. Blanco,et al.  Subcellular distribution of the lactate dehydrogenase isozyme specific for testis and sperm. , 1976, Experimental cell research.

[63]  A. Chalvardjian,et al.  Determination of lipid phosphorus in the nanomolar range. , 1970, Analytical biochemistry.

[64]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.