The Evolution of Jumping Performance in Caribbean Anolis Lizards: Solutions to Biomechanical Trade‐Offs

Adaptationist theory predicts that species will evolve functional specializations for occupying different ecological niches. However, whereas performance traits are often complex, most comparative functional studies examine only simple measures of performance (e.g., sprint speed). Here we examine multiple facets of jumping biomechanics in 12 species of Caribbean Anolis lizards. These 12 species represent six ecomorphs, which are distinct ecological and morphological entities that have independently evolved on different Caribbean islands. We first show that the optimal angles for jumping maximum horizontal distances range from 39° to 42°, but the average jump angle of the 12 species is about 36°. Interestingly, these “suboptimal” jumping angles result in only a small decrement in jump distance but substantial savings in flight duration and jump height. Further, our data show that the two key variables associated with increased jumping velocity (hindlimb length and takeoff acceleration) are independent of one another. Thus, there are two possible ways to achieve superior jumping capabilities: to evolve more muscular limbs—as stronger legs will produce more force and, hence, more acceleration—or evolve longer limbs. Our data show that anole species face trade‐offs that prevent them from simultaneously optimizing different aspects of jumping ability but that they appear to have evolved behaviors that partially overcome these trade‐offs.

[1]  G. Perry,et al.  Anolis lizards of the Caribbean : ecology, evolution, and plate tectonics , 1997 .

[2]  T. Garland,et al.  Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .

[3]  Steven Vogel,et al.  Life's Devices: The Physical World of Animals and Plants , 1988 .

[4]  P. Aerts,et al.  Ecomorphological correlates of habitat partitioning in Corsican lacertid lizards , 2000 .

[5]  M. Begon,et al.  Ecology: Individuals, Populations and Communities , 1986 .

[6]  P. E. Hertz Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): Field thermal biology and ph , 2009 .

[7]  F. H. Berkum EVOLUTIONARY PATTERNS OF THE THERMAL SENSITIVITY OF SPRINT SPEED IN ANOLIS LIZARDS , 1986 .

[8]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[9]  P. Spradbrow Advances in veterinary science and comparative medicine , 1987, Veterinary Microbiology.

[10]  Jonathan B. Losos,et al.  Ecomorphology, Performance Capability, and Scaling of West Indian Anolis Lizards: An Evolutionary Analysis , 1990 .

[11]  J. Losos,et al.  A COMPARATIVE ANALYSIS OF THE ECOLOGICAL SIGNIFICANCE OF MAXIMAL LOCOMOTOR PERFORMANCE IN CARIBBEAN ANOLIS LIZARDS , 1998, Evolution; international journal of organic evolution.

[12]  Jean Clobert,et al.  Quantitative Genetics of Locomotor Speed and Endurance in the Lizard Lacerta vivipara , 1995, Physiological Zoology.

[13]  A. Herrel,et al.  A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Caribbean Anolis lizards , 2003, Journal of Experimental Biology.

[14]  G. Lauder Functional morphology and systematics : studying functional patterns in an historical context , 1990 .

[15]  S. Lair,et al.  Relationships of West Indian Anolis (Sauria: Iguanidae): An Approach Using Slow-Evolving Protein Loci , 1990 .

[16]  T. Garland,et al.  Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system , 2001 .

[17]  A. S. Rand,et al.  The anoles of La Palmac aspects of their ecological relationships , 1969 .

[18]  T. Garland,et al.  EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION , 1995, Evolution; international journal of organic evolution.

[19]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[20]  T. Moermond Habitat Constraints on the Behavior, Morphology, and Community Structure of Anolis Lizards , 1979 .

[21]  R. M. Alexander,et al.  Walking and running , 1984, The Mathematical Gazette.

[22]  P. E. Hertz TEMPERATURE REGULATION IN PUERTO RICAN ANOLIS LIZARDS: A FIELD TEST USING NULL HYPOTHESES' , 1992 .

[23]  R. Andrews,et al.  REPRODUCTIVE EFFORT IN ANOLINE LIZARDS , 1974 .

[24]  P. Aerts Vertical jumping in **Galago senegalensis**: the quest for a hidden power amplifier , 1998 .

[25]  J. Murray,et al.  Scale Effects in Animal Locomotion. , 1978 .

[26]  B. Jayne,et al.  Maneuvering in an arboreal habitat: the effects of turning angle on the locomotion of three sympatric ecomorphs of Anolis lizards. , 2001, The Journal of experimental biology.

[27]  A. Herrel,et al.  Scaling of morphology, bite force, and feeding kinematics in an iguanian and a sclerosglossan lizard , 2002 .

[28]  E. Williams The Origin of Faunas. Evolution of Lizard Congeners in a Complex Island Fauna: A Trial Analysis , 1972 .

[29]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[30]  A. Rand Jumping Ability of Certain Anurans, with Notes on Endurance , 1952 .

[31]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[32]  F. H. Pough Organismal Performance and Darwinian Fitness: Approaches and Interpretations , 1989, Physiological Zoology.

[33]  Michelle A Harris,et al.  The relationship between maximum jumping performance and hind limb morphology/physiology in domestic cats (Felis silvestris catus). , 2002, The Journal of experimental biology.

[34]  J. Losos,et al.  Do Lizards Avoid Habitats in Which Performance Is Submaximal? The Relationship between Sprinting Capabilities and Structural Habitat Use in Caribbean Anoles , 1999, The American Naturalist.

[35]  Paul W. Webb,et al.  Body Form, Locomotion and Foraging in Aquatic Vertebrates , 1984 .

[36]  Kevin de Queiroz,et al.  Phylogenetic Relationships and Tempo of Early Diversification in Anolis Lizards , 1999 .

[37]  E. Williams 15. ECOMORPHS, FAUNAS, ISLAND SIZE, AND DIVERSE END POINTS IN ISLAND RADIATIONS OF ANOLIS , 1983 .

[38]  P. Aerts,et al.  Lizard Locomotion: How Morphology Meets Ecology , 2000 .

[39]  R. Van Damme,et al.  Evolutionary trade‐offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? , 2001, Journal of evolutionary biology.

[40]  R. Huey,et al.  Thermal Biology of Anolis Lizards in a Complex Fauna: The Christatellus Group on Puerto Rico , 1976 .

[41]  R L Marsh,et al.  Jumping ability of anuran amphibians. , 1994, Advances in veterinary science and comparative medicine.

[42]  B. Sinervo,et al.  The effects of morphology and perch diameter on sprint performance of Anolis lizards , 1989 .

[43]  P. Aerts,et al.  SPEED AND STAMINA TRADE-OFF IN LACERTID LIZARDS , 2001, Evolution; international journal of organic evolution.

[44]  J. Losos,et al.  The effect of perch diameter on escape behaviour of Anolis lizards : laboratory predictions and field tests , 1996, Animal Behaviour.

[45]  Kyoungsook Park,et al.  VARIATIONS IN TAKE-OFF VELOCITY OF ANURAN AMPHIBIANS : RELATION TO MORPHOLOGY, MUSCLE CONTRACTILE FUNCTION AND ENZYME ACTIVITY , 1996 .

[46]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[47]  J. Losos,et al.  Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. , 2002, The Journal of experimental zoology.

[48]  T. Garland,et al.  Ecological Morphology of Locomotor Performance in Squamate Reptiles , 2022 .

[49]  T. Garland,et al.  Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): Quantitative genetics and morphometric correlates , 1989, Evolutionary Ecology.

[50]  L. Vitt,et al.  A COMPARISON OF EVOLUTIONARY RADIATIONS IN MAINLAND AND CARIBBEAN ANOLIS LIZARDS , 1997 .

[51]  G. Zug Anuran Locomotion: Structure and Function. I. Preliminary Observations on Relation between Jumping and Osteometrics of Appendicular and Postaxial Skeleton , 1972 .

[52]  T. Garland Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species , 1999, Animal Behaviour.

[53]  Biomechanical Analysis of Jumping in Anolis carolinensis (Reptilia: Iguanidae) , 1992 .

[54]  R. Huey,et al.  PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS , 1987, Evolution; international journal of organic evolution.

[55]  REPRODUCTIVE BURDEN, LOCOMOTOR PERFORMANCE, AND THE COST OF REPRODUCTION IN FREE RANGING LIZARDS , 2000, Evolution; international journal of organic evolution.

[56]  J. Losos Integrative approaches to evolutionary ecology: Anolis lizards as model systems , 1994 .

[57]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[58]  Bieke Vanhooydonck,et al.  Origins of interspecific variation in lizard sprint capacity , 2001 .

[59]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[60]  R. Swinburne The Argument from Design , 1968 .

[61]  R. Alexander,et al.  Ecological morphology : integrative organismal biology , 1995 .

[62]  S. Emerson,et al.  The ecomorphology of Bornean tree frogs (family Rhacophoridae) , 1991 .

[63]  Peter Aerts,et al.  Vertical jumping in Galago senegalensis: the quest for an obligate mechanical power amplifier , 1998 .

[64]  Joyce S. Tsuji,et al.  Inter‐familiar differences in sprint speed of hatchling Sceloporus occidentalis (Reptilia: Iguanidae) , 1987 .

[65]  R. Huey,et al.  IS A JACK‐OF‐ALL‐TEMPERATURES A MASTER OF NONE? , 1984, Evolution; international journal of organic evolution.

[66]  J. Melville,et al.  Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae) , 2000 .

[67]  J. Pounds Ecomorphology, Locomotion, and Microhabitat Structure: Patterns in a Tropical Mainland Anolis Community , 1987 .

[68]  J. Losos,et al.  THE EVOLUTION OF FORM AND FUNCTION: MORPHOLOGY AND LOCOMOTOR PERFORMANCE IN WEST INDIAN ANOLIS LIZARDS , 1990, Evolution; international journal of organic evolution.