TWO-LEVEL PENALIZED FINITE ELEMENT METHODS FOR THE STATIONARY NAVIER-STOKE EQUATIONS

In this article, we first consider some penalized finite element methods for the stationary Navier-stokes equations, based on the finite element space pair (Xh, Mh) which satisfies the discrete inf-sup condition for the P2−P0 element or does not satisfy the discrete inf-sup condition for the P1−P0 element. Then, we consider two-level penalty finite element methods which involve solving one small Navier-Stokes problem on a coarse mesh with mesh size H, a large Stokes problem on a fine mesh with mesh size h = O(2i/2−1H2) for the Pi − P0 element with i = 1, 2, where 0 < 2 < 1 is a penalty parameter. The methods we study provide an approximate solution (u2 , p h 2 ) with the convergence rate of same order as the penalty finite element solution (u2h, p2h), which involves solving one large Navier-Stokes problem on a fine mesh with mesh size h. Hence, our method can save a large amount of computational time.

[1]  William Layton,et al.  A two-level discretization method for the Navier-Stokes equations , 1993 .

[2]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[3]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[4]  William Layton,et al.  A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations , 1996 .

[5]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[6]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[7]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[8]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[9]  J. Tinsley Oden,et al.  Stability of some mixed finite element methods for Stokesian flows , 1984 .

[10]  David J. Silvester,et al.  ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .

[11]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .

[12]  Lutz Tobiska,et al.  A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .

[13]  Jie Shen,et al.  On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .

[14]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[15]  ShenJie On error estimates of projection methods for Navier-Stokes equations , 1992 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[18]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[19]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .