TWO-LEVEL PENALIZED FINITE ELEMENT METHODS FOR THE STATIONARY NAVIER-STOKE EQUATIONS
暂无分享,去创建一个
Yinnian He | Jian Li | Yinnian He | Jian Li | X. Yang | X. Yang
[1] William Layton,et al. A two-level discretization method for the Navier-Stokes equations , 1993 .
[2] M. Bercovier. Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .
[3] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[4] William Layton,et al. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations , 1996 .
[5] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[6] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[7] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[8] Jie Shen,et al. On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .
[9] J. Tinsley Oden,et al. Stability of some mixed finite element methods for Stokesian flows , 1984 .
[10] David J. Silvester,et al. ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .
[11] Alexandre Joel Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .
[12] Lutz Tobiska,et al. A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .
[13] Jie Shen,et al. On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .
[14] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[15] ShenJie. On error estimates of projection methods for Navier-Stokes equations , 1992 .
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[18] Wing Kam Liu,et al. Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .
[19] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .