Machine learning integrated credibilistic semi supervised clustering for categorical data
暂无分享,去创建一个
Ujjwal Maulik | Indrajit Saha | Sinjan Chakraborty | Jnanendra Prasad Sarkar | U. Maulik | Indrajit Saha | Sinjan Chakraborty
[1] Ka Yee Yeung,et al. Principal component analysis for clustering gene expression data , 2001, Bioinform..
[2] Michael K. Ng,et al. A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..
[3] R. J. Kuo,et al. Non-dominated sorting genetic algorithm using fuzzy membership chromosome for categorical data clustering , 2015, Appl. Soft Comput..
[4] Ujjwal Maulik,et al. Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery , 2009, Pattern Recognit..
[5] Shuyuan Yang,et al. Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints , 2018, Eng. Appl. Artif. Intell..
[6] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[7] Chih-Cheng Hung,et al. Credibilistic Clustering: The Model and Algorithms , 2015, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[8] Ming-Syan Chen,et al. On Data Labeling for Clustering Categorical Data , 2008, IEEE Transactions on Knowledge and Data Engineering.
[9] Ujjwal Maulik,et al. Medical Image Segmentation Using Genetic Algorithms , 2009, IEEE Transactions on Information Technology in Biomedicine.
[10] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[11] Fan Yang,et al. Credibilistic clustering algorithms via alternating cluster estimation , 2017, J. Intell. Manuf..
[12] Lotfi A. Zadeh,et al. A Theory of Approximate Reasoning , 1979 .
[13] Ronghua Shang,et al. Non-Negative Spectral Learning and Sparse Regression-Based Dual-Graph Regularized Feature Selection , 2018, IEEE Transactions on Cybernetics.
[14] Ujjwal Maulik,et al. Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation , 2016, Appl. Soft Comput..
[15] Kuo-Lung Wu,et al. Unsupervised possibilistic clustering , 2006, Pattern Recognit..
[16] Michael K. Ng,et al. Clustering categorical data sets using tabu search techniques , 2002, Pattern Recognit..
[17] Shokri Z. Selim,et al. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[18] Sudipto Guha,et al. ROCK: A Robust Clustering Algorithm for Categorical Attributes , 2000, Inf. Syst..
[19] Zengyou He,et al. G-ANMI: A mutual information based genetic clustering algorithm for categorical data , 2010, Knowl. Based Syst..
[20] Ujjwal Maulik,et al. Ensemble based rough fuzzy clustering for categorical data , 2015, Knowl. Based Syst..
[21] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[22] Zied Elouedi,et al. The K-Modes Method under Possibilistic Framework , 2013, Canadian Conference on AI.
[23] Ujjwal Maulik,et al. Rough Set Based Fuzzy K-Modes for Categorical Data , 2012, SEMCCO.
[24] Jennifer Blackhurst,et al. MMR: An algorithm for clustering categorical data using Rough Set Theory , 2007, Data Knowl. Eng..
[25] Ujjwal Maulik,et al. Integrated Rough Fuzzy Clustering for Categorical data Analysis , 2019, Fuzzy Sets Syst..
[26] Jiye Liang,et al. A novel attribute weighting algorithm for clustering high-dimensional categorical data , 2011, Pattern Recognit..
[27] He Zengyou,et al. Squeezer: an efficient algorithm for clustering categorical data , 2002 .
[28] Tengke Xiong,et al. DHCC: Divisive hierarchical clustering of categorical data , 2011, Data Mining and Knowledge Discovery.
[29] S. Miyamoto,et al. FORMULATIONS OF FUZZY CLUSTERING FOR CATEGORICAL DATA , 2005 .
[30] W. L. Ruzzo,et al. An empirical study on Principal Component Analysis for clustering gene expression data , 2000 .
[31] Yian-Kui Liu,et al. Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..
[32] Samy Bengio,et al. SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..
[33] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[34] Shuyuan Yang,et al. Global discriminative-based nonnegative spectral clustering , 2016, Pattern Recognit..
[35] Daniel Graupe,et al. Principles of Artificial Neural Networks , 2018, Advanced Series in Circuits and Systems.
[36] Thomas A. Runkler,et al. Alternating cluster estimation: a new tool for clustering and function approximation , 1999, IEEE Trans. Fuzzy Syst..
[37] L. Zadeh. Fuzzy sets as a basis for a theory of possibility , 1999 .
[38] Ujjwal Maulik,et al. Multiobjective Genetic Algorithm-Based Fuzzy Clustering of Categorical Attributes , 2009, IEEE Transactions on Evolutionary Computation.
[39] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[40] Shengrui Wang,et al. Soft subspace clustering of categorical data with probabilistic distance , 2016, Pattern Recognit..
[41] N. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .
[42] Ujjwal Maulik,et al. Integrating Clustering and Supervised Learning for Categorical Data Analysis , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[43] Zengyou He,et al. k-ANMI: A mutual information based clustering algorithm for categorical data , 2005, Inf. Fusion.
[44] William-Chandra Tjhi,et al. Possibilistic fuzzy co-clustering of large document collections , 2007, Pattern Recognit..
[45] Doheon Lee,et al. Fuzzy clustering of categorical data using fuzzy centroids , 2004, Pattern Recognit. Lett..
[46] R. J. Kuo,et al. Partition-and-merge based fuzzy genetic clustering algorithm for categorical data , 2019, Appl. Soft Comput..
[47] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[48] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[49] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[50] M. H. Fazel Zarandi,et al. Interval type-2 credibilistic clustering for pattern recognition , 2015, Pattern Recognit..
[51] James E. Gentle,et al. Finding Groups in Data: An Introduction to Cluster Analysis. , 1991 .
[52] Lixing Yang,et al. The maximum fuzzy weighted matching models and hybrid genetic algorithm , 2006, Appl. Math. Comput..
[53] Jiye Liang,et al. A weighting k-modes algorithm for subspace clustering of categorical data , 2013, Neurocomputing.
[54] Yuchun Xu,et al. Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering , 2019, Pattern Recognit..
[55] Zengyou He,et al. TCSOM: Clustering Transactions Using Self-Organizing Map , 2005, Neural Processing Letters.
[56] Derrick S. Boone,et al. Retail segmentation using artificial neural networks , 2002 .
[57] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[58] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[59] Zengyou He,et al. A cluster ensemble method for clustering categorical data , 2005, Information Fusion.
[60] M. Friedman. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .
[61] Shuyuan Yang,et al. Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering , 2018, Neurocomputing.
[62] G. A. Ferguson,et al. Statistical analysis in psychology and education , 1960 .