Labelled Deduction over Algebras of Truth-Values

We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: since we can take multiple-valued logics as meaning not only finitely or infinitely many-valued logics but also power-set logics, our framework allows us to present also logics such as modal, intuitionistic and relevance logics, thus providing a first step towards fibring these logics with many-valued ones.

[1]  N. Rescher Many Valued Logic , 1969 .

[2]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[3]  Walter Alexandre Carnielli,et al.  Systematization of finite many-valued logics through the method of tableaux , 1987, Journal of Symbolic Logic.

[4]  L. Bolc,et al.  Many-Valued Logics , 1992 .

[5]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .

[6]  M. de Rijke,et al.  Why Combine Logics? , 1997, Stud Logica.

[7]  Cristina Sernadas,et al.  Categorial bring of logics with terms and binding operators , 2000 .

[8]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[9]  Luca Viganò,et al.  Natural Deduction for Non-Classical Logics , 1998, Stud Logica.

[10]  Christian G. Fermüller,et al.  Labeled Calculi and Finite-Valued Logics , 1998, Stud Logica.

[11]  Cristina Sernadas,et al.  Fibring of Logics as a Categorial Construction , 1999, J. Log. Comput..

[12]  Reiner Hähnle,et al.  Tableaux for Many-Valued Logics , 1999 .

[13]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[14]  Dov M. Gabbay,et al.  Labelled deduction , 2000 .

[15]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[16]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[17]  Cristina Sernadas,et al.  Fibring: completeness preservation , 2001, Journal of Symbolic Logic.

[18]  Luca Viganò,et al.  Fibring Labelled Deduction Systems , 2002, J. Log. Comput..

[19]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[20]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[21]  Dov M. Gabbay,et al.  A generalization of analytic deduction via labelled deductive systems. Part I: Basic substructural logics , 1994, Journal of Automated Reasoning.