Approximation properties and error estimation of q-Bernstein shifted operators

[1]  J. Tariboon Quantum Calculus , 2020, The Journal of King Mongkut's University of Technology North Bangkok.

[2]  Vishnu Narayan Mishra,et al.  Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials , 2018 .

[3]  The Integral Type Modification of Jain Operators and its Approximation Properties , 2018, Numerical Functional Analysis and Optimization.

[4]  S. A. Mohiuddine,et al.  Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators , 2018 .

[5]  N. Rao,et al.  (p; q)-Bivariate-Bernstein-Chlodowsky oper- ators , 2018 .

[6]  Khalid Khan,et al.  Bèzier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD , 2017, J. Comput. Appl. Math..

[7]  Uğur Kadak Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems , 2017 .

[8]  U. Kadak On weighted statistical convergence based on (p,q)-integers and related approximation theorems for functions of two variables , 2016 .

[9]  S. A. Mohiuddine,et al.  On Kantorovich modification of (p,q)$( p,q ) $-Baskakov operators , 2016 .

[10]  Deepmala,et al.  Rate of Approximation by Finite Iterates of $$q$$q-Durrmeyer Operators , 2016 .

[11]  Qingbo Cai,et al.  On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators , 2016, Appl. Math. Comput..

[12]  Tuncer Acar,et al.  (p,q)‐Generalization of Szász–Mirakyan operators , 2015, 1505.06839.

[13]  Mohammad Mursaleen,et al.  On (p, q)-analogue of Bernstein operators , 2015, Appl. Math. Comput..

[14]  Faisal Khan,et al.  Statistical approximation for new positive linear operators of Lagrange type , 2014, Appl. Math. Comput..

[15]  Statistical approximation by Kantorovich-type discrete q-Betaoperators , 2013 .

[16]  Ravi P. Agarwal,et al.  Applications of q-Calculus in Operator Theory , 2013 .

[17]  Ogün Dogru,et al.  On statistical approximation properties of the Kantorovich type Lupaş operators , 2012, Math. Comput. Model..

[18]  M. Mursaleen,et al.  Statistical Approximation Properties of Modified q-Stancu-Beta Operators , 2012 .

[19]  Syed Abdul Mohiuddine,et al.  Korovkin type approximation theorems obtained through generalized statistical convergence , 2010, Appl. Math. Lett..

[20]  A. D. Gadjiev,et al.  Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables , 2010, Appl. Math. Comput..

[21]  Mircea D. Farcas,et al.  About Bernstein polynomials , 2008 .

[22]  M. Derriennic MODIFIED BERNSTEIN POLYNOMIALS AND JACOBI POLYNOMIALS IN Q-CALCULUS , 2004, math/0410206.

[23]  George M. Phillips,et al.  A generalization of the Bernstein polynomials based on the q-integers , 2000, The ANZIAM Journal.

[24]  Francesco Altomare,et al.  Korovkin-type approximation theory and its applications , 1994 .

[25]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.