Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics

[1]  Junhua Li,et al.  Age-dependent sexual dimorphism in the adult human gut microbiota , 2019, bioRxiv.

[2]  J. Raes,et al.  Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study , 2019, Nature Medicine.

[3]  Eddy J. Bautista,et al.  Longitudinal multi-omics of host–microbe dynamics in prediabetes , 2019, Nature.

[4]  Qiang Feng,et al.  1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses , 2019, Nature Biotechnology.

[5]  Q. Tong,et al.  Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis , 2019, EBioMedicine.

[6]  M. Saad,et al.  Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. , 2018, The Journal of nutritional biochemistry.

[7]  Rob Knight,et al.  Regional variation limits applications of healthy gut microbiome reference ranges and disease models , 2018, Nature Medicine.

[8]  Timothy R Church,et al.  A taxonomic signature of obesity in a large study of American adults , 2018, Scientific Reports.

[9]  Patrice D Cani,et al.  The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice , 2018, Diabetologia.

[10]  Yingli Lu,et al.  A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota , 2018, Front. Endocrinol..

[11]  Peer Bork,et al.  Extensive impact of non-antibiotic drugs on human gut bacteria , 2018, Nature.

[12]  Andrew Fagan,et al.  Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis. , 2018, JCI insight.

[13]  T. R. Licht,et al.  Aberrant intestinal microbiota in individuals with prediabetes , 2018, Diabetologia.

[14]  Jian Wang,et al.  Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing , 2017, GigaScience.

[15]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[16]  E. Rimm,et al.  Metatranscriptome of human fecal microbial communities in a cohort of adult men , 2018, Nature Microbiology.

[17]  C. Huttenhower,et al.  Dynamics of metatranscription in the inflammatory bowel disease gut microbiome , 2018, Nature Microbiology.

[18]  Xun Xu,et al.  Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment , 2017, Nature Communications.

[19]  Robert Heyer,et al.  Challenges and perspectives of metaproteomic data analysis. , 2017, Journal of biotechnology.

[20]  Xun Xu,et al.  The gut microbiome in atherosclerotic cardiovascular disease , 2017, Nature Communications.

[21]  Huijue Jia,et al.  Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention , 2017, Nature Medicine.

[22]  Ben C. Collins,et al.  Quantitative proteomics: challenges and opportunities in basic and applied research , 2017, Nature Protocols.

[23]  Yichong Li,et al.  Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013 , 2017, JAMA.

[24]  Duy Tin Truong,et al.  Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis , 2017, npj Biofilms and Microbiomes.

[25]  David Torrents,et al.  Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug , 2017, Nature Medicine.

[26]  Jian Wang,et al.  Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals , 2017, GigaScience.

[27]  D. Sacks,et al.  Absence of IQGAP1 Protein Leads to Insulin Resistance* , 2017, The Journal of Biological Chemistry.

[28]  G. Núñez,et al.  Mechanisms of inflammation-driven bacterial dysbiosis in the gut , 2016, Mucosal Immunology.

[29]  A. Heintz‐Buschart,et al.  Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes , 2016, Nature Microbiology.

[30]  P. Bork,et al.  Human gut microbes impact host serum metabolome and insulin sensitivity , 2016, Nature.

[31]  Zesong Li,et al.  A Comprehensive Investigation toward the Indicative Proteins of Bladder Cancer in Urine: From Surveying Cell Secretomes to Verifying Urine Proteins. , 2016, Journal of proteome research.

[32]  H. Koepsell,et al.  Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus , 2016, Expert opinion on therapeutic targets.

[33]  Xia Li,et al.  APD3: the antimicrobial peptide database as a tool for research and education , 2015, Nucleic Acids Res..

[34]  W. D. de Vos,et al.  A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice , 2016, Nature Medicine.

[35]  Jun Wang,et al.  Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota , 2015, Nature.

[36]  Jens Roat Kultima,et al.  Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota , 2016 .

[37]  Rachel M. Adams,et al.  Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case , 2015, Proteomics.

[38]  Paul Wilmes,et al.  A decade of metaproteomics: Where we stand and what the future holds , 2015, Proteomics.

[39]  R. Schnabel,et al.  Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes , 2015, Diabetes Care.

[40]  R. Heyer,et al.  The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. , 2015, Journal of proteome research.

[41]  Guangshun Wang,et al.  APD 3 : the antimicrobial peptide database as a tool for research and education , 2015 .

[42]  Gillian Dekkers,et al.  IgG Subclasses and Allotypes: From Structure to Effector Functions , 2014, Front. Immunol..

[43]  Qiang Feng,et al.  IQuant: An automated pipeline for quantitative proteomics based upon isobaric tags , 2014, Proteomics.

[44]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[45]  S. Stowell,et al.  Galectin-3 Regulates Desmoglein-2 and Intestinal Epithelial Intercellular Adhesion* , 2014, The Journal of Biological Chemistry.

[46]  Jens Roat Kultima,et al.  Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota , 2015, Nature.

[47]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[48]  K. Xavier,et al.  AI-2-mediated signalling in bacteria. , 2013, FEMS microbiology reviews.

[49]  S. Rebuffat Microcins in action: amazing defence strategies of Enterobacteria. , 2012, Biochemical Society transactions.

[50]  M. Blaut,et al.  Role of commensal gut bacteria in inflammatory bowel diseases , 2012, Gut microbes.

[51]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[52]  P. Austin An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies , 2011, Multivariate behavioral research.

[53]  J. Wiesner,et al.  Antimicrobial peptides: The ancient arm of the human immune system , 2010, Virulence.

[54]  Joshua E. Elias,et al.  Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics , 2010, Proteome Bioinformatics.

[55]  Markus Brosch,et al.  Accurate and sensitive peptide identification with Mascot Percolator. , 2009, Journal of proteome research.

[56]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[57]  Adam Godzik,et al.  Shotgun metaproteomics of the human distal gut microbiota , 2008, The ISME Journal.

[58]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[59]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[60]  D. James,et al.  CaMKII-mediated phosphorylation of the myosin motor Myo1c is required for insulin-stimulated GLUT4 translocation in adipocytes. , 2008, Cell metabolism.

[61]  D. Hsu,et al.  Galectin-3 Is a Negative Regulator of Lipopolysaccharide-Mediated Inflammation1 , 2008, The Journal of Immunology.

[62]  Michael B Wheeler,et al.  The Identification of Potential Factors Associated with the Development of Type 2 Diabetes , 2008, Molecular & Cellular Proteomics.

[63]  S. Hsu,et al.  A dual role for IQGAP1 in regulating exocytosis , 2008, Journal of Cell Science.

[64]  G. Graham,et al.  Antibacterial actions of secreted phospholipases A2. Review. , 2008, Biochimica et biophysica acta.

[65]  Michael Stumvoll,et al.  Type 2 diabetes: principles of pathogenesis and therapy , 2005, The Lancet.

[66]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  C. van Weel,et al.  Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. , 2005, Diabetes care.

[68]  J. Pickup Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. , 2004, Diabetes care.

[69]  C. Weel,et al.  - Glucosidase Inhibitors for Patients With Type 2 Diabetes Results from a Cochrane systematic review and meta-analysis , 2004 .

[70]  T. Ley,et al.  Normal neutrophil function in cathepsin G-deficient mice. , 1999, Blood.

[71]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[72]  J. Duranton,et al.  Kinetic mechanism of the inhibition of cathepsin G by alpha 1-antichymotrypsin and alpha 1-proteinase inhibitor. , 1998, Biochemistry.

[73]  N. Weatherill,et al.  Introduction * , 1947, Nordic Journal of Linguistics.