On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces

We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximation. This class of targets includes separable dual spaces. We also observe that there is a straightforward extension of Pansu’s differentiation theory for Lipschitz maps between Carnot groups, [Pan89], to the most general possible class of Banach space targets, those with the Radon-Nikodym property.

[1]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[2]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[3]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[4]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[5]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[6]  S. Pauls The large scale geometry of nilpotent Lie groups , 1999, math/9903089.

[7]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[8]  H. Pajot,et al.  Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings , 1997, math/9710208.

[9]  Stephen Semmes,et al.  On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .

[10]  J. Heinonen,et al.  From local to global in quasiconformal structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[12]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[13]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[14]  B. Kirchheim Rectifiable metric spaces: local structure and regularity of the Hausdorff measure , 1994 .

[15]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[16]  Paul Ernest,et al.  The mathematics department , 1988 .

[17]  Abstrakte Funktionen und lineare Operatoren , 1987 .

[18]  B. Maurey,et al.  Counterexamples to several problems concerning _{}-embeddings , 1984 .

[19]  Joram Lindenstrauss,et al.  Classical Banach spaces I: Sequence Spaces. , 1977 .

[20]  N. Aronszajn,et al.  Differentiability of Lipschitzian mappings between Banach spaces , 1976 .

[21]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[22]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[23]  H. Fédérer Geometric Measure Theory , 1969 .

[24]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[25]  F. Gehring,et al.  RINGS AND QUASICONFORMAL MAPPINGS IN SPACE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[26]  V. Klee Mappings into normed linear spaces , 1960 .

[27]  H. Rademacher,et al.  Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln. II , 1920 .