Generic Reductions for In-place Polynomial Multiplication
暂无分享,去创建一个
[1] Jean-Michel Muller,et al. Modern Computer Arithmetic , 2016, Computer.
[2] Guillaume Hanrot,et al. The Middle Product Algorithm I , 2004, Applicable Algebra in Engineering, Communication and Computing.
[3] Anatolij A. Karatsuba,et al. Multiplication of Multidigit Numbers on Automata , 1963 .
[4] Joachim von zur Gathen,et al. Modern Computer Algebra (3. ed.) , 2003 .
[5] Joris van der Hoeven,et al. Polynomial Multiplication over Finite Fields in Time \( O(n \log n \) , 2019, J. ACM.
[6] Daniel S. Roche. Space- and time-efficient polynomial multiplication , 2009, ISSAC '09.
[7] Jean-Guillaume Dumas,et al. Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm , 2007, ISSAC '09.
[8] Joris van der Hoeven,et al. Faster Polynomial Multiplication over Finite Fields , 2014, J. ACM.
[9] Arnold Schönhage,et al. Schnelle Multiplikation großer Zahlen , 1971, Computing.
[10] Joshua R. Wang,et al. Deterministic Time-Space Tradeoffs for k-SUM , 2016, ICALP.
[11] Thom Mulders. On Short Multiplications and Divisions , 2000, Applicable Algebra in Engineering, Communication and Computing.
[12] John E. Savage,et al. Space-Time Tradeoffs for Oblivious Interger Multiplications , 1979, ICALP.
[13] B. Salvy,et al. Algorithmes Efficaces en Calcul Formel , 2017 .
[14] Éric Schost,et al. Tellegen's principle into practice , 2003, ISSAC '03.
[15] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[16] S. Cook,et al. ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .
[17] V. V. Williams. ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).
[18] P. Zimmermann,et al. Speeding up the Division and Square Root of Power Series , 2000 .
[19] Yiping Cheng. Space-Efficient Karatsuba Multiplication for Multi-Precision Integers , 2016, ArXiv.
[20] Chen Su,et al. Impact of Intel's new instruction sets on software implementation of GF(2)[x] multiplication , 2012, Inf. Process. Lett..
[21] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[22] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[23] David Harvey,et al. An in-place truncated fourier transform and applications to polynomial multiplication , 2010, ISSAC.
[24] Karl R. Abrahamson. Time-space tradeoffs for branching programs contrasted with those for straight-line programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).
[25] Richard P. Brent,et al. Modern Computer Arithmetic , 2010 .
[26] Emmanuel Thomé. Karatsuba multiplication with temporary space of size ≤ n , 2002 .
[27] Guillaume Hanrot,et al. A long note on Mulders' short product , 2004, J. Symb. Comput..
[28] Erich Kaltofen,et al. Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..