Phase-space window and degrees of freedom of optical systems with multiple apertures.

We show how to explicitly determine the space-frequency window (phase-space window) for optical systems consisting of an arbitrary sequence of lenses and apertures separated by arbitrary lengths of free space. If the space-frequency support of a signal lies completely within this window, the signal passes without information loss. When it does not, the parts that lie within the window pass and the parts that lie outside of the window are blocked, a result that is valid to a good degree of approximation for many systems of practical interest. Also, the maximum number of degrees of freedom that can pass through the system is given by the area of its space-frequency window. These intuitive results provide insight and guidance into the behavior and design of systems involving multiple apertures and can help minimize information loss.

[1]  D Mendlovic,et al.  Understanding superresolution in Wigner space. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  A. Lohmann,et al.  Holography in phase space. , 2008, Applied optics.

[3]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[4]  Brian A Wandell,et al.  Optical efficiency of image sensor pixels. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Aykut Koç,et al.  Efficient computation of quadratic-phase integrals in optics. , 2006, Optics letters.

[6]  Mj Martin Bastiaans Application of the Wigner distribution function in optics , 1997 .

[7]  Tatiana Alieva,et al.  Properties of the linear canonical integral transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Francis T. S. Yu,et al.  Light and information , 2015, Optical Memory and Neural Networks.

[9]  Sercan Ö Arık,et al.  Fundamental structure of Fresnel diffraction: longitudinal uniformity with respect to fractional Fourier order. , 2012, Optics letters.

[10]  G. Toraldo di Francia Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.

[11]  G. Guattari,et al.  Degrees of freedom of images from point-like-element pupils , 1974 .

[12]  Richard Barakat,et al.  Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics , 1985 .

[13]  F Gori,et al.  Degrees of freedom for spherical scatterers. , 1981, Optics letters.

[14]  Jari Lindberg,et al.  Mathematical concepts of optical superresolution , 2012 .

[15]  Franco Gori,et al.  Degrees of freedom of an optical image in coherent illumination, in the presence of aberrations , 1975 .

[16]  Figen S. Oktem,et al.  Exact Relation Between Continuous and Discrete Linear Canonical Transforms , 2009, IEEE Signal Processing Letters.

[17]  Haldun M Ozaktas,et al.  Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Walter J. Riker A Review of J , 2010 .

[19]  John J. Healy,et al.  Bandwidth, compact support, apertures and the linear canonical transform in ABCD systems , 2008, SPIE Photonics Europe.

[20]  José A Rodrigo,et al.  Optical system design for orthosymplectic transformations in phase space. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  John T. Sheridan,et al.  Optical encryption and the space bandwidth product , 2005 .

[22]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[23]  Gregory William Forbes,et al.  Wigner Distributions and Phase Space in Optics , 2000 .

[24]  G. D. Francia Resolving Power and Information , 1955 .

[25]  Zeev Zalevsky,et al.  Space–bandwidth product adaptation and its application to superresolution: examples , 1997 .

[26]  Tatiana Alieva,et al.  Classification of lossless first-order optical systems and the linear canonical transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Kurt Bernardo Wolf,et al.  Construction and Properties of Canonical Transforms , 1979 .

[28]  A. Asundi,et al.  Imaging analysis of digital holography. , 2005, Optics express.

[29]  F. Gori,et al.  Shannon number and degrees of freedom of an image , 1973 .

[30]  Tatiana Alieva,et al.  Alternative representation of the linear canonical integral transform. , 2005, Optics letters.

[31]  David Mendlovic,et al.  Space–bandwidth product adaptation and its application to superresolution: fundamentals , 1997 .

[32]  Zeev Zalevsky,et al.  Space–bandwidth product of optical signals and systems , 1996 .

[33]  B Javidi,et al.  Lensless 3D Digital Holographic Microscopic Imaging at Vacuum UV Wavelength , 2010, Journal of Display Technology.

[34]  A. Starikov,et al.  Effective number of degrees of freedom of partially coherent sources , 1982 .

[35]  Bahram Javidi,et al.  Shannon number and information capacity of three-dimensional integral imaging. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Miller,et al.  Electromagnetic degrees of freedom of an optical system , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Qi Wang,et al.  Properties, and Applications , 2005 .

[38]  Adrian Stern,et al.  Uncertainty principles in linear canonical transform domains and some of their implications in optics. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  M. F. Erden,et al.  Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems , 1997 .

[40]  Sevinç Figen Öktem Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints , 2009 .

[41]  Billur Barshan,et al.  Optimal filtering with linear canonical transformations , 1997 .

[42]  Zeev Zalevsky,et al.  Geometrical superresolution in infrared sensor: experimental verification , 2004 .

[43]  Haldun M. Özaktas,et al.  Fractional Fourier domains , 1995, Signal Process..

[44]  Daniel Claus,et al.  Quantitative space-bandwidth product analysis in digital holography. , 2011, Applied optics.

[45]  Z. Zalevsky,et al.  Generalized Wigner function for the analysis of superresolution systems. , 1998, Applied optics.

[46]  M. Bastiaans,et al.  Synthesis of an arbitrary ABCD system with fixed lens positions. , 2006, Optics letters.

[47]  Raffaele Solimene,et al.  Number of degrees of freedom of the radiated field over multiple bounded domains. , 2007, Optics letters.

[48]  G. Guattari,et al.  Effects of Coherence on the Degrees of Freedom of an Image , 1971 .

[49]  Sercan Ö Arık,et al.  Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform. , 2011, Optics letters.

[50]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[51]  Bahram Javidi,et al.  Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms. , 2006, Applied optics.

[52]  M. L. Calvo,et al.  Gyrator transform: properties and applications. , 2007, Optics express.

[53]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[54]  Cagatay Candan,et al.  Digital Computation of Linear Canonical Transforms , 2008, IEEE Transactions on Signal Processing.

[55]  Zeev Zalevsky,et al.  Nanophotonics for optical super resolution from an information theoretical perspective: a review , 2009 .

[56]  J. Sheridan,et al.  Cases where the linear canonical transform of a signal has compact support or is band-limited. , 2008, Optics letters.