An Affine Multicurrency Model with Stochastic Volatility and Stochastic Interest Rates

We introduce a tractable multicurrency model with stochastic volatility and correlated stochastic interest rates that takes into account the smile in the foreign exchange (FX) market and the evolution of yield curves. The pricing of vanilla options on FX rates can be efficiently performed through the FFT methodology thanks to the affine property of the model. Our framework is also able to describe many nontrivial links between FX rates and interest rates: a calibration exercise highlights the ability of the model to simultaneously fit FX implied volatilities while being coherent with interest rate products.

[1]  Ernst Eberlein,et al.  On the duality principle in option pricing: semimartingale setting , 2008, Finance Stochastics.

[2]  Andrea Buraschi,et al.  Correlation Risk and the Term Structure of Interest Rates , 2008 .

[3]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[4]  Currency Derivatives under a Minimal Market Model with Random Scaling , 2005 .

[5]  Antoon Pelsser,et al.  Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility , 2008 .

[6]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[7]  Johannes Muhle-Karbe,et al.  Option Pricing in Multivariate Stochastic Volatility Models of OU Type , 2010, SIAM J. Financial Math..

[8]  R. Ahlip Foreign Exchange Options Under Stochastic Volatility And Stochastic Interest Rates , 2008 .

[9]  Lp Hughston,et al.  International Models for Interest Rates and Foreign Exchange , 1997 .

[10]  P. Spreij,et al.  The affine transform formula for affine jump-diffusions with a general closed convex state space , 2010, 1005.1099.

[11]  E. Schlögl Option Pricing Where the Underlying Assets Follow a Gram/Charlier Density of Arbitrary Order , 2010 .

[12]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[13]  Peter Austing Repricing the Cross Smile: An Analytic Joint Density , 2011 .

[14]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[15]  M. Salmon,et al.  Using Copulas to Construct Bivariate Foreign Exchange Distributions with an Application to the Sterling Exchange Rate Index , 2005 .

[16]  Nikolaos Panigirtzoglou,et al.  Testing the Stability of Implied Probability Density Functions , 2002 .

[17]  C. Chiarella,et al.  Stochastic Correlation and Risk Premia in Term Structure Models , 2016 .

[18]  M. Kijima,et al.  A multi-quality model of interest rates , 2009 .

[19]  Cornelis W. Oosterlee,et al.  On the Heston Model with Stochastic Interest Rates , 2010, SIAM J. Financial Math..

[20]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[21]  E. Mayerhofer,et al.  Exponential moments of affine processes , 2011, 1111.1659.

[22]  C. Oosterlee,et al.  On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates , 2010 .

[23]  Alan G. White,et al.  One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities , 1993, Journal of Financial and Quantitative Analysis.

[24]  W. Schachermayer,et al.  HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK–MERTON–SCHOLES? , 2007, 0711.1272.

[25]  C. Gouriéroux,et al.  Wishart Quadratic Term Structure Models , 2003 .

[26]  P. Carr,et al.  Stochastic Skew in Currency Options , 2004 .

[27]  Oliver Pfaffel,et al.  ON STRONG SOLUTIONS FOR POSITIVE DEFINITE JUMP , 2011 .

[28]  D. Zwillinger Matrix Riccati Equations , 1992 .

[29]  Griselda Deelstra,et al.  Local Volatility Pricing Models for Long-Dated FX Derivatives , 2010 .

[30]  E. Mayerhofer Affine processes on positive semidefinite d x d matrices have jumps of finite variation in dimension d > 1 , 2011, 1104.0784.

[31]  C. Tebaldi,et al.  SOLVABLE AFFINE TERM STRUCTURE MODELS , 2007 .

[32]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[33]  Roger Lee Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .

[34]  Martino Grasselli,et al.  Riding on the smiles , 2010 .

[35]  P. Glasserman,et al.  MOMENT EXPLOSIONS AND STATIONARY DISTRIBUTIONS IN AFFINE DIFFUSION MODELS , 2010 .

[36]  Tübinger Diskussionsbeiträge Stochastic volatility with an Ornstein-Uhlenbeck process: An extension , 2014 .

[37]  E. Lukács CERTAIN ENTIRE CHARACTERISTIC FUNCTIONS , 2005 .

[38]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[39]  Affine diffusion processes: theory and applications , 2009 .

[40]  Hoi Ying Wong,et al.  Currency option pricing with Wishart process , 2013, J. Comput. Appl. Math..

[41]  Agnieszka Janek,et al.  C P ] 8 O ct 2 01 0 FX smile in the Heston model 1 , 2010 .

[42]  Kris Jacobs,et al.  The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well , 2009, Manag. Sci..

[43]  The Stochastic Intrinsic Currency Volatility Model: A Consistent Framework for Multiple FX Rates and Their Volatilities , 2012 .

[44]  D. Brigo,et al.  Interest Rate Models , 2001 .

[45]  J. Muhle‐Karbe,et al.  Exponentially affine martingales, affine measure changes and exponential moments of affine processes , 2010 .

[46]  Alan L. Lewis Option Valuation Under Stochastic Volatility: With Mathematica Code , 2000 .

[47]  Matthias Muck,et al.  Keep on smiling? The pricing of Quanto options when all covariances are stochastic , 2012 .

[48]  Alessandro Gnoatto,et al.  Smiles All Around: FX Joint Calibration in a Multi-Heston Model , 2012, 1201.1782.

[49]  Claudio Tebaldi,et al.  Option pricing when correlations are stochastic: an analytical framework , 2007 .

[50]  Damir Filipović,et al.  Affine Processes on Positive Semidefinite Matrices , 2009, 0910.0137.

[52]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[53]  Iain J. Clark Foreign Exchange Option Pricing: A Practitioner's Guide , 2011 .

[54]  Alexander Lipton,et al.  Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .

[55]  A Guide to FX Options Quoting Conventions , 2010, The Journal of Derivatives.

[56]  Akihiko Takahashi,et al.  Pricing Multi-Asset Cross Currency Options , 2012 .

[57]  Uwe Wystup,et al.  FX Options and Structured Products , 2007 .

[58]  Antoon Pelsser,et al.  Pricing Long-Maturity Equity and FX Derivatives with Stochastic Interest Rates and Stochastic Volatility , 2005 .

[59]  Claudio Tebaldi,et al.  A multifactor volatility Heston model , 2008 .

[60]  Nicole El Karoui,et al.  Wishart Stochastic Volatility: Asymptotic Smile and Numerical Framework , 2008 .

[61]  E. Mayerhofer Wishart Processes and Wishart Distributions: An Affine Processes Point of View , 2012, 1201.6634.

[62]  Michael N. Bennett,et al.  Quanto Pricing with Copulas , 2004 .

[63]  M. Salmon,et al.  Pricing Multivariate Currency Options with Copulas , 2006 .

[64]  R. Lord,et al.  Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility , 2009 .

[65]  Marie-France Bru,et al.  Wishart processes , 1991 .

[66]  M. Garman.,et al.  Foreign currency option values , 1983 .

[67]  R. Ahlip,et al.  Computational aspects of pricing foreign exchange options with stochastic volatility and stochastic interest rates , 2010 .

[68]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[69]  Alessandro Gnoatto The Wishart Short-Rate Model , 2012 .