Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics

BackgroundMolecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole superfamily of transcription factors, the basic helix-loop-helix (bHLH) proteins, at the scale of the whole metazoan kingdom.ResultsWe identified in silico the putative full complement of bHLH genes in the sequenced genomes of 12 different species representative of the main metazoan lineages, including three non-bilaterian metazoans, the cnidarians Nematostella vectensis and Hydra magnipapillata and the demosponge Amphimedon queenslandica. We have performed extensive phylogenetic analyses of the 695 identified bHLHs, which has allowed us to allocate most of these bHLHs to defined evolutionary conserved groups of orthology.ConclusionThree main features in the history of the bHLH gene superfamily can be inferred from these analyses: (i) an initial diversification of the bHLHs has occurred in the pre-Cambrian, prior to metazoan cladogenesis; (ii) a second expansion of the bHLH superfamily occurred early in metazoan evolution before bilaterians and cnidarians diverged; and (iii) the bHLH complement during the evolution of the bilaterians has been remarkably stable. We suggest that these features may be extended to other developmental gene families and reflect a general trend in the evolution of the developmental gene repertoires of metazoans.

[1]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[2]  J. Finnerty,et al.  Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa) , 2004, Development.

[3]  M. Martindale,et al.  Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis , 2005, Development Genes and Evolution.

[4]  B. Schierwater,et al.  Ancient complexity of the non-Hox ANTP gene complement in the anthozoan Nematostella vectensis: implications for the evolution of the ANTP superclass. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[5]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Manolo Gouy,et al.  SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny , 1996, Comput. Appl. Biosci..

[7]  M. Manuel,et al.  Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. , 2004, Molecular phylogenetics and evolution.

[8]  A. Poustka,et al.  Timing and mechanism of ancient vertebrate genome duplications -- the adventure of a hypothesis. , 2005, Trends in genetics : TIG.

[9]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[10]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[11]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[12]  Joseph F. Ryan,et al.  StellaBase: The Nematostella vectensis Genomics Database , 2005, Nucleic Acids Res..

[13]  A. Bezděk,et al.  Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence , 1998, Cladistics : the international journal of the Willi Hennig Society.

[14]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[15]  Nicole F. King Choanoflagellates , 2005, Current Biology.

[16]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[17]  Bassem A. Hassan,et al.  Doing the MATH: is the mouse a good model for fly development? , 2000, Genes & development.

[18]  P. Bailey,et al.  The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. , 2003, Molecular biology and evolution.

[19]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[20]  D. Lipman,et al.  National Center for Biotechnology Information , 2019, Springer Reference Medizin.

[21]  T. Holstein,et al.  Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. , 2006, Developmental biology.

[22]  Erich Bornberg-Bauer,et al.  Convergent evolution of gene networks by single‐gene duplications in higher eukaryotes , 2004, EMBO reports.

[23]  Thomas J Naughton,et al.  Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified , 2006, BMC Evolutionary Biology.

[24]  S. Carroll,et al.  Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins , 2003, Science.

[25]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[26]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Valérie Ledent,et al.  Phylogenetic analysis of the human basic helix-loop-helix proteins , 2002, Genome Biology.

[28]  R. Guigó,et al.  GeneID in Drosophila. , 2000, Genome research.

[29]  K. Nicholas,et al.  GeneDoc: Analysis and visualization of genetic variation , 1997 .

[30]  J. Hogenesch,et al.  The PAS superfamily: sensors of environmental and developmental signals. , 2000, Annual review of pharmacology and toxicology.

[31]  W. Atchley,et al.  Phylogenetic Analysis of Plant Basic Helix-Loop-Helix Proteins , 2003, Journal of Molecular Evolution.

[32]  B. Schierwater,et al.  Axial Patterning and Diversification in the Cnidaria Predate the Hox System , 2006, Current Biology.

[33]  A. Vincent,et al.  The COE – Collier/Olf1/EBF – transcription factors: structural conservation and diversity of developmental functions , 2001, Mechanisms of Development.

[34]  Hong Ma,et al.  Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis1[W] , 2006, Plant Physiology.

[35]  J. Mullikin,et al.  The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis , 2006, Genome Biology.

[36]  M. Martindale,et al.  Molecular evidence for deep evolutionary roots of bilaterality in animal development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Ponting,et al.  PAS: a multifunctional domain family comes to light , 1997, Current Biology.

[38]  David J. Miller,et al.  Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. , 2005, Trends in genetics : TIG.

[39]  A. Ereskovsky,et al.  Larval development in the Homoscleromorpha (Porifera, Demospongiae) , 2005 .

[40]  V. Hinman,et al.  Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity , 2006, Evolution & development.

[41]  W. Atchley,et al.  A natural classification of the basic helix-loop-helix class of transcription factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[43]  William Dirks,et al.  Early evolution of animal cell signaling and adhesion genes , 2006, Proceedings of the National Academy of Sciences.

[44]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[45]  David W. Deerfield,et al.  Software Development GeneDoc Analysis and Visualization of Genetic Variation , 1997 .

[46]  M. Vervoort,et al.  The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. , 2001, Genome research.

[47]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[48]  M. Martindale,et al.  Dorso/Ventral Genes Are Asymmetrically Expressed and Involved in Germ-Layer Demarcation during Cnidarian Gastrulation , 2006, Current Biology.

[49]  C. Murre,et al.  Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms , 2000, Molecular and Cellular Biology.

[50]  B. Zhu,et al.  Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements , 2006, Nature.

[51]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Levine,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[53]  O Gascuel,et al.  BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. , 1997, Molecular biology and evolution.

[54]  Susan Jones,et al.  An overview of the basic helix-loop-helix proteins , 2004, Genome Biology.

[55]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[56]  David Q. Matus,et al.  The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa) , 2004, Development Genes and Evolution.

[57]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[58]  N. King,et al.  The unicellular ancestry of animal development. , 2004, Developmental cell.

[59]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[60]  D. Hayward,et al.  A simple plan — cnidarians and the origins of developmental mechanisms , 2004, Nature Reviews Genetics.

[61]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[62]  A. Simpson,et al.  The real ‘kingdoms’ of eukaryotes , 2004, Current Biology.

[63]  T. Cavalier-smith,et al.  Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence , 1996 .

[64]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[65]  B. Lüscher,et al.  Function and regulation of the transcription factors of the Myc/Max/Mad network. , 2001, Gene.

[66]  Y. Jan,et al.  A genomewide survey of basic helix-loop-helix factors in Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Huq,et al.  The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.013839. , 2003, The Plant Cell Online.

[68]  K. Robinson,et al.  SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. , 2000, Nucleic acids research.