Separation of Variables in the Semistable Range
暂无分享,去创建一个
[1] V. Souček,et al. Fischer decomposition for spinor valued polynomials in several variables , 2017, 1708.01426.
[2] R. Lávička,et al. Fischer decomposition for polynomials on superspace , 2015, 1508.03426.
[3] Shun-Jen Cheng,et al. Dualities and Representations of Lie Superalgebras , 2012 .
[4] K. Coulembier. The orthosymplectic superalgebra in harmonic analysis , 2012, 1208.3827.
[5] P. V. Lancker. The Monogenic Fischer Decomposition: Two Vector Variables , 2012 .
[6] Jae-Hoon Kwon,et al. Kostant homology formulas for oscillator modules of Lie superalgebras , 2009, 0901.0247.
[7] W. Soergel. Book Review: Representations of semisimple Lie algebras in the BGG category $\mathcal O$ , 2009 .
[8] R. Goodman,et al. Symmetry, Representations, and Invariants , 2009 .
[9] J. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .
[10] S. Lievens,et al. The Paraboson Fock Space and Unitary Irreducible Representations of the Lie Superalgebra $${\mathfrak{osp}(1|2n)}$$ , 2008 .
[11] F. Sommen,et al. Analysis of Dirac Systems and Computational Algebra , 2004 .
[12] R. Goodman. Multiplicity-Free Spaces and Schur–Weyl–Howe Duality , 2004 .
[13] V. Dobrev,et al. Positive Energy Unitary Irreducible Representations of the Superalgebras osp(1|2n, IR) and Character Formulae for n = 3 , 2004, 1506.02272.
[14] F. Sommen,et al. Models for irreducible representations ofSpin(m) , 2001 .
[15] F. Sommen. AN ALGEBRA OF ABSTRACT VECTOR VARIABLES , 1997 .
[16] R. Howe,et al. Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond , 1995 .
[17] F. Sommen,et al. Clifford Algebra and Spinor-Valued Functions , 1992 .
[18] R. Howe,et al. Remarks on classical invariant theory , 1989 .
[19] D. Constales. The relative position of Lý2 domains in complex and in Clifford analysis , 1989 .
[20] M. Kashiwara,et al. On the Segal-Shale-Weil representations and harmonic polynomials , 1978 .