Separation of Variables in the Semistable Range

[1]  V. Souček,et al.  Fischer decomposition for spinor valued polynomials in several variables , 2017, 1708.01426.

[2]  R. Lávička,et al.  Fischer decomposition for polynomials on superspace , 2015, 1508.03426.

[3]  Shun-Jen Cheng,et al.  Dualities and Representations of Lie Superalgebras , 2012 .

[4]  K. Coulembier The orthosymplectic superalgebra in harmonic analysis , 2012, 1208.3827.

[5]  P. V. Lancker The Monogenic Fischer Decomposition: Two Vector Variables , 2012 .

[6]  Jae-Hoon Kwon,et al.  Kostant homology formulas for oscillator modules of Lie superalgebras , 2009, 0901.0247.

[7]  W. Soergel Book Review: Representations of semisimple Lie algebras in the BGG category $\mathcal O$ , 2009 .

[8]  R. Goodman,et al.  Symmetry, Representations, and Invariants , 2009 .

[9]  J. Humphreys Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .

[10]  S. Lievens,et al.  The Paraboson Fock Space and Unitary Irreducible Representations of the Lie Superalgebra $${\mathfrak{osp}(1|2n)}$$ , 2008 .

[11]  F. Sommen,et al.  Analysis of Dirac Systems and Computational Algebra , 2004 .

[12]  R. Goodman Multiplicity-Free Spaces and Schur–Weyl–Howe Duality , 2004 .

[13]  V. Dobrev,et al.  Positive Energy Unitary Irreducible Representations of the Superalgebras osp(1|2n, IR) and Character Formulae for n = 3 , 2004, 1506.02272.

[14]  F. Sommen,et al.  Models for irreducible representations ofSpin(m) , 2001 .

[15]  F. Sommen AN ALGEBRA OF ABSTRACT VECTOR VARIABLES , 1997 .

[16]  R. Howe,et al.  Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond , 1995 .

[17]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions , 1992 .

[18]  R. Howe,et al.  Remarks on classical invariant theory , 1989 .

[19]  D. Constales The relative position of Lý2 domains in complex and in Clifford analysis , 1989 .

[20]  M. Kashiwara,et al.  On the Segal-Shale-Weil representations and harmonic polynomials , 1978 .