Comparison of trajectory parametrization methods with statistical analysis for dynamic parameter identification of serial robot

This paper introduces an approach for designing exciting trajectories for parameter identification of serial robots based on a combination of Fourier Series (FS) and Schroeder Phased Harmonic Sequence (SPHS). An initial estimation of the trajectory is designed for each link using SPHS. Afterwards, the initial trajectory enable to find the initial parameters of the FS which are fed to an optimization process that finds the optimal parameters of the FS used for identification purpose. Like this, we can take the advantages of both FS and SPHS and eliminate the disadvantages of each of them. Moreover, a comparison of results between; the proposed method, original FS, and SPHS is taking place to demonstrate the effectiveness of the new approach. In this vein, a one-way analysis of variance is conducted to compare whether there are significant improvement or not. An PA10 7DoF arm robot serves as test bed for conducting experiments. Findings shows that the optimal trajectory found through the proposed approach requires less computation time compared to original FS which can be an advantage for fast and robust identification.

[1]  K.J. Kyriakopoulos,et al.  Modeling, full identification and control of the mitsubishi PA-10 robot arm , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[2]  Surya P. N. Singh,et al.  V-REP: A versatile and scalable robot simulation framework , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Carme Torras,et al.  Learning Physical Collaborative Robot Behaviors From Human Demonstrations , 2016, IEEE Transactions on Robotics.

[4]  Jingfu Jin,et al.  Parameter identification for industrial robots with a fast and robust trajectory design approach , 2015 .

[5]  C. Atkeson,et al.  Estimation of inertial parameters of rigid body links of manipulators , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  Vicente Mata,et al.  On the Experiment Design for Direct Dynamic Parameter Identification of Parallel Robots , 2009, Adv. Robotics.

[7]  Peter C. Young,et al.  Identification and control of electro-mechanical systems using state-dependent parameter estimation , 2017, Int. J. Control.

[8]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[9]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[10]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[11]  Gerd Hirzinger,et al.  Robot excitation trajectories for dynamic parameter estimation using optimized B-splines , 2012, 2012 IEEE International Conference on Robotics and Automation.

[12]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[13]  M. Gautier Optimal motion planning for robot's inertial parameters identification , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[14]  Pejman Iravani,et al.  A new approach to design optimal excitation trajectories for parameter estimation of robot dynamics , 2014, 2014 UKACC International Conference on Control (CONTROL).

[15]  Jun Wu,et al.  A Control Strategy of a Two Degrees-of-Freedom Heavy Duty Parallel Manipulator , 2015 .

[16]  Vicente Mata,et al.  A comparison between direct and indirect dynamic parameter identification methods in industrial robots , 2006, Robotica.

[17]  Vicente Mata,et al.  Dynamic Parameter Identification of Parallel Robots Considering Physical Feasibility and Nonlinear Friction Models , 2007 .

[18]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[19]  Giuseppe Carlo Calafiore,et al.  Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation , 2001, J. Field Robotics.

[20]  Shiqiang Zhu,et al.  Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series: , 2012 .

[21]  Marcelo H. Ang,et al.  Dynamic Model Identification for Industrial Robots , 2009 .

[22]  Philippe Lemoine,et al.  OpenSYMORO: An open-source software package for symbolic modelling of robots , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[23]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.