Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs).

[1]  C. A. Olivati,et al.  Nanostructured films from phthalocyanine and carbon nanotubes: surface morphology and electrical characterization. , 2012, Journal of colloid and interface science.

[2]  Lunhui Guan,et al.  Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. , 2012, Physical chemistry chemical physics : PCCP.

[3]  A. Filoramo,et al.  Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction , 2011 .

[4]  A. Yu,et al.  Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. , 2010, Journal of the American Chemical Society.

[5]  Ping Liu,et al.  Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. , 2010, Angewandte Chemie.

[6]  Robert L. Arechederra,et al.  Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts. , 2010, ACS applied materials & interfaces.

[7]  Qiang Zhang,et al.  Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. , 2010, Journal of the American Chemical Society.

[8]  Jonathan N. Coleman,et al.  New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants , 2010 .

[9]  Deryn Chu,et al.  Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions , 2009 .

[10]  J. Coleman,et al.  Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. , 2009, ACS nano.

[11]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[12]  O. V. Kharissova,et al.  Recent Advances on the Soluble Carbon Nanotubes , 2009 .

[13]  Nicolas Alonso-Vante,et al.  Nonprecious metal catalysts for the molecular oxygen‐reduction reaction , 2008 .

[14]  Jae-Young Choi,et al.  Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. , 2008, Journal of the American Chemical Society.

[15]  Maria Forsyth,et al.  High Rates of Oxygen Reduction over a Vapor Phase–Polymerized PEDOT Electrode , 2008, Science.

[16]  L. Dai,et al.  Electrochemistry at carbon nanotube electrodes: is the nanotube tip more active than the sidewall? , 2008, Angewandte Chemie.

[17]  Ping Yu,et al.  Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen , 2007 .

[18]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[19]  M. Roy,et al.  Investigation of charge transport, photo generated electron transfer and photovoltaic response of iron phthalocyanine (FePc):TiO2 thin films , 2006 .

[20]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[21]  M. Prato,et al.  Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. , 2004, Angewandte Chemie.

[22]  T. Vaithianathan,et al.  A Surface Masking Technique for the Determination of Plasma Polymer Film Thickness by AFM , 2000 .

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[25]  R. Adzic Recent advances in the kinetics of oxygen reduction , 1996 .

[26]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  E. Yeager,et al.  Electrocatalytic aspects of iron phthalocyanine and its 'MU'-oxo derivatives dispersed on high surface area carbon , 1987 .

[29]  W. Visscher,et al.  Electrocatalysis of cathodic oxygen reduction by metal phthalocyanines: Part IV. Iron phthalocyanine as electrocatalyst: Mechanism , 1984 .

[30]  E. Yeager,et al.  A Mechanistic Study of O 2 Reduction on Water Soluble Phthalocyanines Adsorbed on Graphite Electrodes , 1980 .

[31]  A. Howie,et al.  Image Contrast And Localized Signal Selection Techniques , 1979 .

[32]  S. Hüfner,et al.  X-Ray Photoelectron Valence Band Studies on Phthalocyanine Compounds , 1976 .

[33]  C. Bernard,et al.  Etude de la reduction de l'oxygene sur les phtalocyanines monomeres et polymeres—III. Phtalocyanines monomeres de fer en couche mince sur l'or , 1975 .

[34]  Manos Mavrikakis,et al.  Electronic structure and catalysis on metal surfaces. , 2002, Annual review of physical chemistry.

[35]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[36]  Marvin Warshay,et al.  The fuel cell in space: Yesterday, today and tomorrow , 1990 .

[37]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .