Reconstruction of Spatiotemporally Continuous MODIS-Band Reflectance in East and South Asia from 2012 to 2015

[1]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[2]  Jean-Claude Roger,et al.  Toward Landsat and Sentinel-2 BRDF Normalization and Albedo Estimation: A Case Study in the Peruvian Amazon Forest , 2018, Front. Earth Sci..

[3]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[4]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[5]  Yang Li,et al.  Analysis of Extracting Prior BRDF from MODIS BRDF Data , 2016, Remote. Sens..

[6]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[7]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[8]  Massimo Menenti,et al.  Reconstruction of global MODIS NDVI time series: performance of harmonic analysis of time series (HANTS). , 2015 .

[9]  M. Claverie,et al.  Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products , 2015 .

[10]  A. Strahler,et al.  Retrieval of Land Surface Albedo from Satellite Observations: A Simulation Study , 1999 .

[11]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[12]  Serhiy Skakun,et al.  A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization , 2019, Remote. Sens..

[13]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[14]  O. Hagolle,et al.  The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape , 2015 .

[15]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[16]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[17]  Steven M. Quiring,et al.  Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States , 2019, Remote Sensing of Environment.

[18]  C. Woodcock,et al.  Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods , 2014 .

[19]  Lei Chen,et al.  Quantifying the Reflectance Anisotropy Effect on Albedo Retrieval from Remotely Sensed Observations Using Archetypal BRDFs , 2018, Remote. Sens..

[20]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  Xiaowen Li,et al.  An Anisotropic Flat Index (AFX) to derive BRDF archetypes from MODIS , 2014 .

[22]  Jingyun Fang,et al.  Changes in China’s lakes: climate and human impacts , 2019, National science review.

[23]  H. Xie,et al.  A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015 , 2019, Scientific Data.

[24]  Chao-Hung Lin,et al.  Patch-Based Information Reconstruction of Cloud-Contaminated Multitemporal Images , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[26]  Alan H. Strahler,et al.  Solar zenith angle effects on forest canopy hemispherical reflectances calculated with a geometric-optical bidirectional reflectance model , 1993, IEEE Trans. Geosci. Remote. Sens..

[27]  Suhong Liu,et al.  Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Shilong Piao,et al.  Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes , 2019, Remote Sensing of Environment.

[29]  Jing Zhang,et al.  Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis , 2019, Remote. Sens..

[30]  José A. Sobrino,et al.  Retrieval of Surface Albedo on a Daily Basis: Application to MODIS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Weimin Ju,et al.  A half‐century of changes in China's lakes: Global warming or human influence? , 2010 .

[32]  C. Woodcock,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation , 2003 .

[33]  Craig S. T. Daughtry,et al.  Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery , 2018, Remote. Sens..

[34]  N. C. Strugnell,et al.  An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs , 2001 .

[35]  Kun-Shan Chen,et al.  A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  M. Claverie,et al.  Intercomparison of Landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRAD network , 2014 .

[38]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[39]  Jiancheng Shi,et al.  Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements , 2018 .

[40]  C. Woodcock,et al.  Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance? , 2020 .

[41]  Jia Xu,et al.  Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales , 2017, Remote. Sens..