Grobner Bases in Commutative Algebra

Polynomial rings and ideals Grobner bases First applications Grobner bases for modules Grobner bases of toric ideals Selected applications in commutative algebra and combinatorics Bibliography Index

[1]  Takayuki Hibi,et al.  Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws , 1987 .

[2]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[3]  Bernd Sturmfels,et al.  Gröbner bases and Stanley decompositions of determinantal rings , 1990 .

[4]  Serkan Hosten,et al.  Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..

[5]  Jürgen Herzog,et al.  Gröbner bases and multiplicity of determinantal and pfaffian ideals , 1992 .

[6]  Takayuki Hibi,et al.  Toric Ideals Generated by Quadratic Binomials , 1999 .

[7]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[8]  Gunnar Fløystad,et al.  Gröbner bases of syzygies and Stanley depth , 2010, 1003.4495.

[9]  Takayuki Hibi,et al.  Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..

[10]  Takayuki Hibi,et al.  Ideals of fiber type and polymatroids , 2005 .

[11]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[12]  J. Herzog,et al.  Strongly Koszul algebras , 2000 .

[13]  Gian-Carlo Rota,et al.  Mathematical Essays in honor of Gian-Carlo Rota , 1998 .

[14]  Takayuki Hibi,et al.  Distributive Lattices, Bipartite Graphs and Alexander Duality , 2003 .

[15]  Bernd Sturmfels,et al.  Lattice Walks and Primary Decomposition , 1998 .

[16]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[17]  D. Eisenbud,et al.  Direct methods for primary decomposition , 1992 .

[18]  Masahiro Ohtani,et al.  Graphs and Ideals Generated by Some 2-Minors , 2009, 0911.2549.

[19]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[20]  Seth Sullivant,et al.  Ideals of adjacent minors , 2003 .

[21]  R. Stanley The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .

[22]  T. Hibi,et al.  Weakly Polymatroidal Ideals , 2006 .

[23]  Ezra Miller Theory and applications of lattice point methods for binomial ideals , 2010, ArXiv.

[24]  R. Stanley Combinatorics and commutative algebra , 1983 .

[25]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[26]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[27]  D. Kapur,et al.  A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra , 1989, Computers and Mathematics.

[28]  Viviana Ene,et al.  Monomial ideals and toric rings of Hibi type arising from a finite poset , 2010, Eur. J. Comb..

[29]  Monomial IdealsSerkan Ho Monomial Ideals , 2001 .

[30]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[31]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[32]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[33]  G. A. Reisner,et al.  Cohen-Macaulay quotients of polynomial rings , 1976 .

[34]  Rafael H. Villarreal,et al.  Cohen-macaulay graphs , 1990 .

[35]  日比 孝之,et al.  Algebraic combinatorics on convex polytopes , 1992 .

[36]  Melvin Hochster,et al.  Rings of Invariants of Tori, Cohen-Macaulay Rings Generated by Monomials, and Polytopes , 1972 .