Grobner Bases in Commutative Algebra
暂无分享,去创建一个
[1] Takayuki Hibi,et al. Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws , 1987 .
[2] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[3] Bernd Sturmfels,et al. Gröbner bases and Stanley decompositions of determinantal rings , 1990 .
[4] Serkan Hosten,et al. Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..
[5] Jürgen Herzog,et al. Gröbner bases and multiplicity of determinantal and pfaffian ideals , 1992 .
[6] Takayuki Hibi,et al. Toric Ideals Generated by Quadratic Binomials , 1999 .
[7] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[8] Gunnar Fløystad,et al. Gröbner bases of syzygies and Stanley depth , 2010, 1003.4495.
[9] Takayuki Hibi,et al. Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..
[10] Takayuki Hibi,et al. Ideals of fiber type and polymatroids , 2005 .
[11] J. Okninski,et al. On monomial algebras , 1988, Semigroup Algebras.
[12] J. Herzog,et al. Strongly Koszul algebras , 2000 .
[13] Gian-Carlo Rota,et al. Mathematical Essays in honor of Gian-Carlo Rota , 1998 .
[14] Takayuki Hibi,et al. Distributive Lattices, Bipartite Graphs and Alexander Duality , 2003 .
[15] Bernd Sturmfels,et al. Lattice Walks and Primary Decomposition , 1998 .
[16] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[17] D. Eisenbud,et al. Direct methods for primary decomposition , 1992 .
[18] Masahiro Ohtani,et al. Graphs and Ideals Generated by Some 2-Minors , 2009, 0911.2549.
[19] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[20] Seth Sullivant,et al. Ideals of adjacent minors , 2003 .
[21] R. Stanley. The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .
[22] T. Hibi,et al. Weakly Polymatroidal Ideals , 2006 .
[23] Ezra Miller. Theory and applications of lattice point methods for binomial ideals , 2010, ArXiv.
[24] R. Stanley. Combinatorics and commutative algebra , 1983 .
[25] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[26] Edgar E. Enochs,et al. On Cohen-Macaulay rings , 1994 .
[27] D. Kapur,et al. A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra , 1989, Computers and Mathematics.
[28] Viviana Ene,et al. Monomial ideals and toric rings of Hibi type arising from a finite poset , 2010, Eur. J. Comb..
[29] Monomial IdealsSerkan Ho. Monomial Ideals , 2001 .
[30] Miles Reid,et al. Commutative Ring Theory , 1989 .
[31] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[32] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[33] G. A. Reisner,et al. Cohen-Macaulay quotients of polynomial rings , 1976 .
[34] Rafael H. Villarreal,et al. Cohen-macaulay graphs , 1990 .
[35] 日比 孝之,et al. Algebraic combinatorics on convex polytopes , 1992 .
[36] Melvin Hochster,et al. Rings of Invariants of Tori, Cohen-Macaulay Rings Generated by Monomials, and Polytopes , 1972 .