The Chromatic Number of Graph Powers

It is shown that the maximum possible chromatic number of the square of a graph with maximum degree d and girth g is (1 +o(1))d2 if g = 3, 4, 5 or 6, and is Θ(d2 / log d) if g ≥ 7. Extensions to higher powers are considered as well.

[1]  J. A.,et al.  On Moore Graphs with Diameters 2 and 3 , 2022 .

[2]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[3]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[4]  Pinar Heggernes,et al.  Partitioning Graphs into Generalized Dominating Sets , 1998, Nord. J. Comput..

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Charles Delorme,et al.  Large graphs with given degree and diameter. II , 1984, J. Comb. Theory, Ser. B.

[7]  Felix Lazebnik,et al.  New Examples of Graphs without Small Cycles and of Large Size , 1993, Eur. J. Comb..

[8]  S. Thomas McCormick,et al.  Optimal approximation of sparse hessians and its equivalence to a graph coloring problem , 1983, Math. Program..

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  Béla Bollobás Chromatic number, girth and maximal degree , 1978, Discret. Math..

[11]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[12]  Daphne Der-Fen Liu,et al.  On L(d, 1)-labelings of graphs , 2000, Discret. Math..

[13]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[14]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[15]  J. Pintz,et al.  The Difference Between Consecutive Primes , 1996 .

[16]  N. F. Gjeddebæk On the difference between consecutive primes , 1966 .

[17]  Magnús M. Halldórsson,et al.  Coloring powers of planar graphs , 2000, SODA '00.