The Number of Huffman Codes, Compact Trees, and Sums of Unit Fractions

The number of “nonequivalent” compact Huffman codes of length <i>r</i> over an alphabet of size <i>t</i> has been studied frequently. Equivalently, the number of “nonequivalent” complete <i>t</i>-ary trees has been examined. We first survey the literature, unifying several independent approaches to the problem. Then, improving on earlier work, we prove a very precise asymptotic result on the counting function, consisting of two main terms and an error term.

[1]  T. Aaron Gulliver,et al.  The Minimum Average Code for Finite Memoryless Monotone Sources , 2007, IEEE Transactions on Information Theory.

[2]  Helmut Prodinger,et al.  Level number sequences for trees , 1987, Discret. Math..

[3]  T. R. Riley,et al.  The Absence of Efficient Dual Pairs of Spanning Trees in Planar Graphs , 2006, Electron. J. Comb..

[4]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[5]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[6]  Solomon W. Golomb Sources Which Maximize the Choice of a Huffman Coding Tree , 1980, Inf. Control..

[7]  E. Curtis,et al.  The mod-p lower central series and the Adams spectral sequence , 1966 .

[8]  Martin C. Tangora Level Number Sequences of Trees and the Lambda Algebra , 1991, Eur. J. Comb..

[9]  Michael B. Baer D-ary Bounded-Length Huffman Coding , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  Egyptian fractions with restrictions , 2011, 1108.6118.

[11]  Shimon Even,et al.  Generation and Enumeration of All Solutions of the Characteristic Sum Condition , 1972, Inf. Control..

[12]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[13]  M. Mahowald A new infinite family in 2π∗S☆ , 1977 .

[14]  Serap A. Savari,et al.  A SAT-Based Scheme to Determine Optimal Fix-Free Codes , 2010, 2010 Data Compression Conference.

[15]  Darrel Hankerson,et al.  Introduction to Information Theory and Data Compression , 2003 .

[16]  H. Minc A Problem in Partitions: Enumeration of Elements of a given Degree in the free commutative entropic cyclic Groupoid , 1959 .

[17]  Douglas Stott Parker,et al.  The Construction of Huffman Codes is a Submodular ("Convex") Optimization Problem Over a Lattice of Binary Trees , 1999, SIAM J. Comput..

[18]  Emily Norwood The number of different possible compact codes (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[19]  Peter D. Johnson,et al.  Generating Huffman sequences , 2005, J. Algorithms.

[20]  Jeffrey Shallit,et al.  On the Vector Space of the Automatic Reals , 1996, Theor. Comput. Sci..

[21]  T. Aaron Gulliver,et al.  A Tree Based Algorithm for Generating All Possible Binary Compact Codes with N Codewords , 2003, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences.

[22]  S. Gitler,et al.  A spectrum whose cohomology is a certain cyclic module over the steenrod algebra , 1973 .

[23]  M. Khosravifard,et al.  The supertree of the compact codes , 2008, 2008 International Symposium on Telecommunications.

[24]  David W. Boyd The Asymptotic Number of Solutions of a Diophantine Equation from Coding Theory , 1975, J. Comb. Theory, Ser. A.

[25]  N. Minami,et al.  Segal’s Burnside Ring Conjecture for Compact Lie Groups , 1994 .

[26]  M. Mahowald A NEW INFINITE FAMILY IN &I , 2001 .

[27]  Serap A. Savari On Minimum-Redundancy Fix-Free Codes , 2009, 2009 Data Compression Conference.

[28]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[29]  Jordan Paschke,et al.  Computing and estimating the number of n-ary Huffman sequences of a specified length , 2011, Discret. Math..

[30]  R. Otter The Number of Trees , 1948 .

[31]  Isi Mitrani,et al.  Level Number Sequences for Binary Trees , 1977 .

[32]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[33]  Edgar N. Gilbert,et al.  Codes based on inaccurate source probabilities , 1971, IEEE Trans. Inf. Theory.

[34]  D. Knuth,et al.  Mathematics for the Analysis of Algorithms , 1999 .

[35]  George E. Andrews The Rogers-Ramanujan reciprocal and Minc’s partition function , 1981 .

[36]  Frank Ruskey,et al.  Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes , 2006, Electron. J. Comb..

[37]  T. Browning,et al.  The number of representations of rationals as a sum of unit fractions , 2011 .