Local Lagrange Interpolation with Bivariate Splines of Arbitrary Smoothness
暂无分享,去创建一个
Frank Zeilfelder | Günther Nürnberger | Larry L. Schumaker | Vera Rayevskaya | L. Schumaker | G. Nürnberger | Frank Zeilfelder | Vera Rayevskaya
[1] D. Wilhelmsen,et al. A Markov inequality in several dimensions , 1974 .
[2] Frank Zeilfelder,et al. Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations , 2004, Adv. Comput. Math..
[3] A. Ženíšek,et al. A general theorem on triangular finite $C^{(m)}$-elements , 1974 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] G. Nürnberger,et al. Fundamental Splines on Triangulations , 2003 .
[6] Frank Zeilfelder,et al. Local Lagrange Interpolation by Cubic Splines on a Class of Triangulations , 2001 .
[7] Frank Zeilfelder,et al. Lagrange Interpolation by C1 Cubic Splines on Triangulations of Separable Quadrangulations , 2002 .
[8] Frank Zeilfelder,et al. Local Lagrange interpolation by bivariate C 1 cubic splines , 2001 .
[9] Schumaker,et al. Upper and Lower Bounds on the Dimension of Superspline Spaces , 2003 .
[10] Frank Zeilfelder,et al. Bivariate spline interpolation with optimal approximation order , 2001 .
[11] Frank Zeilfelder,et al. Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..
[12] Larry L. Schumaker,et al. On the approximation power of bivariate splines , 1998, Adv. Comput. Math..
[13] Frank Zeilfelder,et al. Local Lagrange Interpolation on Powell-Sabin Triangulations and Terrain Modelling , 2001 .
[14] P. Sablonnière,et al. Triangular finite elements of HCT type and classCρ , 1994, Adv. Comput. Math..
[15] Charles K. Chui,et al. Construction of local C1 quartic spline elements for optimal-order approximation , 1996, Math. Comput..
[16] Frank Zeilfelder,et al. Lagrange Interpolation by Bivariate C1-Splines with Optimal Approximation Order , 2004, Adv. Comput. Math..
[17] L. Schumaker,et al. Scattered Data Interpolation Using C 2 Supersplines of Degree Six , 1997 .
[18] Larry L. Schumaker,et al. Smooth macro-elements based on Clough-Tocher triangle splits , 2002, Numerische Mathematik.
[19] Frank Zeilfelder,et al. Developments in bivariate spline interpolation , 2000 .
[20] A. Ženíšek. Interpolation polynomials on the triangle , 1970 .
[21] Tracy Whelan,et al. A representation of a C2 interpolant over triangles , 1986, Comput. Aided Geom. Des..
[22] Don Hong,et al. Stability of optimal-order approximation by bivariate splines over arbitrary triangulations , 1995 .
[23] Larry L. Schumaker,et al. C1 Quintic Splines on Type-4 Tetrahedral Partitions , 2004, Adv. Comput. Math..
[24] Gerald E. Farin,et al. A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..