Guide to best practices for ocean acidification research and data reporting

Ocean acidification is an undisputed fact. The ocean presently takes up one-fourth of the carbon CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in the surface ocean, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 and dissolved inorganic carbon, and decreased concentration of carbonate ion. While our understanding of the possible consequences of ocean acidification is still rudimentary, both the scientific community and the society at large are increasingly concerned about the possible risks associated with ocean acidification for marine organisms and ecosystems. As this new and pressing field of marine research gains momentum, many in our community, including representatives of coordinated research projects, international scientific organisations, funding agencies, and scientists in this field felt the need to provide guidelines and standards for ocean acidification research. To initiate this process, the European Project on Ocean Acidification (EPOCA) and the International Oceanographic Commission (IOC) jointly invited over 40 leading scientists active in ocean acidification research to a meeting at the Leibniz Institute of Marine Science (IFM-GEOMAR) in Kiel, Germany on 19-21 November 2008. At the meeting, which was sponsored by EPOCA, IOC, the Scientific Council on Oceanic Research (SCOR), the U.S. Ocean Carbon and Biogeochemistry Project (OCB) and the Kiel Excellence Cluster “The Future Ocean”, the basic structure and contents of the guide was agreed upon and an outline was drafted. In the following months, the workshop participants and additional invited experts prepared draft manuscripts for each of the sections, which were subsequently reviewed by independent experts and revised according to their recommendations. Starting 15 May 2009, the guide was made publicly available for an open community review.

[1]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[2]  J. Jaubert,et al.  Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophora pistillata , 2000 .

[3]  R. Nydal,et al.  Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern Hemisphere Sites, 1962-1993 , 1996 .

[4]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[5]  F. Morel,et al.  CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage , 2002 .

[6]  M. Denis,et al.  Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation , 2003 .

[7]  K. Banse On the interpretation of data for the carbon‐to‐nitrogen ratio of phytoplankton1 , 1974 .

[8]  S. Lohrenz,et al.  Rapid coupling of sinking particle fluxes between surface and deep ocean waters , 1992, Nature.

[9]  P. R. Sloan,et al.  RELATIONSHIP BETWEEN CARBON CONTENT, CELL VOLUME, AND AREA IN PHYTOPLANKTON , 1966 .

[10]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[11]  J. Ryther,et al.  Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment , 1971, Science.

[12]  E. Paasche A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions , 2001 .

[13]  R. Sherrell,et al.  Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages , 2005 .

[14]  C. Law,et al.  A trace‐metal clean, pH‐controlled incubator system for ocean acidification incubation studies , 2013 .

[15]  M. Badger,et al.  THE DIVERSITY AND COEVOLUTION OF RUBISCO, PLASTIDS, PYRENOIDS, AND CHLOROPLAST-BASED CO2-CONCENTRATING MECHANISMS IN ALGAE , 1998 .

[16]  J. Beardall Effects of photon flux density on the ‘C02-concentrating mechanism’ of the cyanobacterium Anabaena variabilis , 1991 .

[17]  M. R. Droop,et al.  The nutrient status of algal cells in continuous culture , 1974, Journal of the Marine Biological Association of the United Kingdom.

[18]  M. V. Nielsen PHOTOSYNTHETIC CHARACTERISTICS OF THE COCCOLITHOPHORID EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) EXPOSED TO ELEVATED CONCENTRATIONS OF DISSOLVED INORGANIC CARBON 1 , 1995 .

[19]  K. Fanning Nutrient provinces in the sea: Concentration ratios, reaction rate ratios, and ideal covariation , 1992 .

[20]  Dennis A. Hansell,et al.  A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). , 2001, Ambio.

[21]  U. Riebesell,et al.  Enhanced biological carbon consumption in a high CO2 ocean , 2006, Nature.

[22]  M. Orellana,et al.  Spontaneous assembly of marine dissolved organic matter into polymer gels , 1998, Nature.

[23]  P. Manríquez,et al.  Evaluation of a semi-automatic system for long-term seawater carbonate chemistry manipulation , 2013 .

[24]  J. Stefels,et al.  The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique , 2000 .

[25]  J. Waterbury,et al.  Biological and ecological characterization of the marine unicellular Cyanobacterium Synechococcus , 1987 .

[26]  M. D. Keller,et al.  MEDIA FOR THE CULTURE OF OCEANIC ULTRAPHYTOPLANKTON 1,2 , 1987 .

[27]  H. Pörtner,et al.  Part 3 : Measurements of CO 2-sensitive processes Studies of metabolic rate and other characters across life stages 10 , 2010 .

[28]  M. Veldhuis,et al.  CELL AND GROWTH CHARACTERISTICS OF TYPES A AND B OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) AS DETERMINED BY FLOW CYTOMETRY AND CHEMICAL ANALYSES 1 , 1994 .

[29]  S. Markager Practical guidelines for the analysis of seawater , 2010 .

[30]  S. Wakeham,et al.  Field evaluation of a valved sediment trap , 1993 .

[31]  Michael E J Masson,et al.  A tutorial on a practical Bayesian alternative to null-hypothesis significance testing , 2011, Behavior research methods.

[32]  J. Valdes,et al.  A comparison of the quantity and composition of material caught in a neutrally buoyant versus surface-tethered sediment trap , 2000 .

[33]  David R. Anderson,et al.  Null Hypothesis Testing: Problems, Prevalence, and an Alternative , 2000 .

[34]  G. Wolff,et al.  Determination of particulate organic carbon (POC) in seawater: The relative methodological importance of artificial gains and losses in two glass-fiber-filter-based techniques , 2007 .

[35]  K. O. Buesselera,et al.  An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234 Th as a POC flux proxy , 2005 .

[36]  B. Delille,et al.  EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification , 2010 .

[37]  Anja Engel,et al.  Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton , 2002 .

[38]  A. Alldredge,et al.  Marine snow derived from abandoned larvacean houses : sinking rates, particle content and mechanisms of aggregate formation , 1996 .

[39]  Ulf Riebesell,et al.  Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium , 2007 .

[40]  R. Hannigan,et al.  A comparison of two pH‐stat carbon dioxide dosing systems for ocean acidification experiments , 2013 .

[41]  G. Nehrke,et al.  Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry , 2009 .

[42]  L. Coppola,et al.  An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy , 2006 .

[43]  B. Eyre,et al.  Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N‐labeling study , 2007 .

[44]  U. Riebesell,et al.  Carbon acquisition of bloom‐forming marine phytoplankton , 2003 .

[45]  Andreas Oschlies,et al.  Nitrogen Fixation and Temperature Physiological Constraints on the Global Distribution of Trichodesmium – Effect of Temperature on Diazotrophy Nitrogen Fixation and Temperature , 2022 .

[46]  Timothy R. Parsons,et al.  FURTHER MEASUREMENTS OF PRIMARY PRODUCTION USING A LARGE-VOLUME PLASTIC SPHERE , 1963 .

[47]  Stuart G. Wakeham,et al.  Novel techniques for collection of sinking particles in the ocean and determining their settling rates , 2005 .

[48]  N. Lundholm,et al.  Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. , 2008, Physiologia plantarum.

[49]  D. J. Franklin,et al.  EVOLUTION OF AN ARTIFICIAL SEAWATER MEDIUM: IMPROVEMENTS IN ENRICHED SEAWATER, ARTIFICIAL WATER OVER THE LAST TWO DECADES , 2001 .

[50]  A. Engel The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom , 2000 .

[51]  J. Middelburg,et al.  Stable isotopes and biomarkers in microbial ecology. , 2002, FEMS microbiology ecology.

[52]  G. Rhee,et al.  Effects of Nitrate and Phosphate Limitation on Cyclostat Growth of Two Freshwater Diatoms , 1982 .

[53]  Ulf Riebesell,et al.  Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison , 1999 .

[54]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[55]  C. D. Keeling,et al.  Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium , 2000 .

[56]  M. Charette,et al.  234Th sorption and export models in the water column: A review , 2006 .

[57]  J. Baldock,et al.  Dispersed clay and organic matter in soil: their nature and associations , 1999 .

[58]  Hugh L. MacIntyre,et al.  Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton , 2003 .

[59]  L. Chou,et al.  Biocalcification by Emiliania huxleyi in batch culture experiments , 2008, Mineralogical Magazine.

[60]  W. Dennison,et al.  Enclosed experimental ecosystems and scale : tools for understanding and managing coastal ecosystems , 2009 .

[61]  M. Mulholland,et al.  The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101 , 2005 .

[62]  D. Wolf-Gladrow,et al.  Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions , 2008 .

[63]  B. Delille,et al.  Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment , 2004 .

[64]  Fei-xue Fu,et al.  CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry , 2007 .

[65]  S. Trimborn,et al.  Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi , 2007 .

[66]  U. Riebesell,et al.  Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting , 2013 .

[67]  E. Buitenhuis,et al.  Response to Comment on "Phytoplankton Calcification in a High-CO2 World" , 2008, Science.

[68]  K. Banse Uptake of inorganic carbon and nitrate by marine plankton and the Redfield Ratio , 1994 .

[69]  J. Elser,et al.  Scale‐dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters , 2008 .

[70]  Kenneth R. Hinga,et al.  Effects of pH on coastal marine phytoplankton , 2002 .

[71]  J. Montoya,et al.  A Simple, High-Precision, High-Sensitivity Tracer Assay for N(inf2) Fixation , 1996, Applied and environmental microbiology.

[72]  S. Fowler,et al.  Role of large particles in the transport of elements and organic compounds through the oceanic water column , 1986 .

[73]  D. Hutchins,et al.  A shipboard natural community continuous culture system for ecologically relevant low‐level nutrient enrichment experiments , 2003 .

[74]  B. Biddanda,et al.  Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton , 1997 .

[75]  M. Fasham,et al.  Ocean Biogeochemistry and Global Change , 1997 .

[76]  S. Ben-Yaakov,et al.  The influence of sea water composition on the apparent constants of the carbonate system , 1973 .

[77]  P. Tortell,et al.  Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton , 2007 .

[78]  M. Badger,et al.  Measurement of CO2 and HCO3− fluxes in cyanobacteria and microalgae during steady‐state photosynthesis , 1994 .

[79]  J. Middelburg,et al.  A 13 C labelling study on carbon fluxes in Arctic plankton communities under elevated CO 2 levels , 2013 .

[80]  F. Dulac,et al.  Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs , 2010 .

[81]  Fei-xue Fu,et al.  Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera , 2008 .

[82]  B. Peterson,et al.  STABLE ISOTOPES IN ECOSYSTEM STUDIES , 1987 .

[83]  U. Passow Transparent exopolymer particles (TEP) in aquatic environments , 2002 .

[84]  U. Riebesell,et al.  Carbon acquisition of marine phytoplankton: Effect of photoperiod length , 2006 .

[85]  Peter G. Brewer,et al.  Alkalinity changes generated by phytoplankton growth1 , 1976 .

[86]  P. Falkowski,et al.  Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry , 1999, Photosynthesis Research.

[87]  B. Peterson,et al.  Particulate organic matter flux and planktonic new production in the deep ocean , 1979, Nature.

[88]  V. Ittekkot,et al.  The Terrestrial Link in the Removal of Organic Carbon in the Sea , 1990 .

[89]  Ilana Berman-Frank,et al.  Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium , 2007 .

[90]  Hugh L. MacIntyre,et al.  Nutrient Limitation of Marine Photosynthesis , 1992 .

[91]  T. Andersen,et al.  Carbon, nitrogen and phosphorus resource supply and utilisation for coastal planktonic heterotrophic bacteria in a gradient of nutrient loading , 2012 .

[92]  Andrew G. Dickson,et al.  Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 , 1994 .

[93]  P. Dassow,et al.  The strain concept in phytoplankton ecology , 2009 .

[94]  H. Jannasch Steady state and the chemostat in ecology1,1 , 1974 .

[95]  Thomas W. Trull,et al.  Understanding the export of biogenic particles in oceanic waters: Is there consensus? , 2007 .

[96]  B. Delille,et al.  Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi , 2005 .

[97]  R. Hardy,et al.  Applications of the acetylene-ethylene assay for measurement of nitrogen fixation , 1973 .

[98]  P. Murtaugh P values , hypothesis testing , and model selection : it ’ s déjà vu all over again 1 , 2022 .

[99]  D. Burmaster The Continuous Culture of Phytoplankton: Mathematical Equivalence Among Three Steady-State Models , 1979, The American Naturalist.

[100]  F. Morel,et al.  The geobiological cycle of trace elements in aquatic systems: Redfield revisited , 1985 .

[101]  A. Novick,et al.  Description of the chemostat. , 1950, Science.

[102]  R. Geider,et al.  ELEVATED ATMOSPHERIC CARBON DIOXIDE INCREASES ORGANIC CARBON FIXATION BY EMILIANIA HUXLEYI (HAPTOPHYTA), UNDER NUTRIENT‐LIMITED HIGH‐LIGHT CONDITIONS 1 , 2005 .

[103]  Richard A. Krishfield,et al.  Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean , 2002 .

[104]  H.-O. Pörtner,et al.  Box 1.1: Terminology and units for parameters relevant to the carbonate system. , 2010 .

[105]  T. Thingstad,et al.  Nutrient pathways through the microbial food web: principles and predictability discussed, based on five different experiments , 2010 .

[106]  Fei-xue Fu,et al.  Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae) , 2008 .

[107]  M. Mulholland,et al.  The fate of nitrogen fixed by diazotrophs in the ocean , 2007 .

[108]  G Peltier,et al.  O(2) uptake in the light in chlamydomonas: evidence for persistent mitochondrial respiration. , 1985, Plant physiology.

[109]  H. Ducklow,et al.  Assessing sources and ages of organic matter supporting river and estuarine bacterial production: A multiple‐isotope (Δ14C, 㬔C, and δ15N) approach , 2004 .

[110]  U. Riebesell,et al.  Polysaccharide aggregation as a potential sink of marine dissolved organic carbon , 2004, Nature.

[111]  F. Morel,et al.  Effects of the pH/ p CO 2 control method on medium chemistry and phytoplankton growth , 2009 .

[112]  G. Bratbak,et al.  Viral control of Emiliania huxleyi blooms , 1996 .

[113]  R. Sandaa,et al.  Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem , 2008, Nature.

[114]  J. C. Goldman,et al.  Steady state growth and ammonium uptake of a fast‐growing marine diatom 1 , 1978 .

[115]  G. Bratbak,et al.  Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms , 1993 .

[116]  A. Alldredge,et al.  Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom , 2002 .

[117]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[118]  A. Alldredge,et al.  Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP) , 1995 .

[119]  Hyun‐cheol Kim,et al.  Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater , 2006 .

[120]  J. Zehr,et al.  GROWTH AND NITROGEN FIXATION OF THE DIAZOTROPHIC FILAMENTOUS NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS 101 IN DEFINED MEDIA: EVIDENCE FOR A CIRCADIAN RHYTHM 1 , 1996 .

[121]  E. Paasche,et al.  Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation , 1994 .

[122]  R. Haese,et al.  Continuous-flow analysis of dissolved inorganic carbon content in seawater. , 2001, Analytical chemistry.

[123]  Hyun‐cheol Kim,et al.  Significant contribution of dissolved organic matter to seawater alkalinity , 2009 .

[124]  K. Arrigo Carbon cycle: Marine manipulations , 2007, Nature.

[125]  E. STEEMANN NIELSEN,et al.  Measurement of the Production of Organic Matter in the Sea by means of Carbon-14 , 1951, Nature.

[126]  A. Larsen,et al.  Effects of increased atmospheric CO 2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom , 2007 .

[127]  Kenneth Schneider,et al.  The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma , 2006 .

[128]  J. Fourqurean,et al.  Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems , 2011 .

[129]  P. Sedwick,et al.  CO2 sensitivity of Southern Ocean phytoplankton , 2008 .

[130]  S. Fowler,et al.  Time-series measurements of 234Th in water column and sediment trap samples from the northwestern Mediterranean Sea , 2009 .

[131]  W. Sunda,et al.  Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications , 1995 .

[132]  J. Valdes,et al.  A Neutrally Buoyant, Upper Ocean Sediment Trap , 2000 .

[133]  B. Delille,et al.  Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments , 2005 .

[134]  F. Gervais,et al.  Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations , 2001 .

[135]  U. Riebesell,et al.  CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations , 2009 .

[136]  L. W. Winkler,et al.  Die Bestimmung des im Wasser gelösten Sauerstoffes , 1888 .

[137]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[138]  Jens Schröter,et al.  Modelling carbon overconsumption and the formation of extracellular particulate organic carbon , 2007 .

[139]  Gordon A. Riley,et al.  Particulate Organic Matter in Sea Water , 1971 .

[140]  U. Riebesell,et al.  Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment , 2007 .

[141]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[142]  U. Riebesell,et al.  Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research , 2013 .

[143]  A. Dickson The carbon dioxide system in seawater : equilibrium chemistry and measurements 1 , 2011 .

[144]  Dieter Wolf-Gladrow,et al.  Total alkalinity: The explicit conservative expression and its application to biogeochemical processes , 2007 .

[145]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[146]  W. Broecker Keeping global change honest , 1991 .

[147]  R. Geider,et al.  ELEMENTAL AND BIOCHEMICAL COMPOSITION OF RHINOMONAS RETICULATA (CRYPTOPHYTA) IN RELATION TO LIGHT AND NITRATE‐TO‐PHOSPHATE SUPPLY RATIOS 1 , 2005 .

[148]  D. Wolf-Gladrow,et al.  Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies , 2012 .

[149]  A. Dickson,et al.  Technical Note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature , 2013 .

[150]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .

[151]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .

[152]  Noah,et al.  Limnology and Oceanography. , 1961, Science.

[153]  M. R. Anderson,et al.  Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid , 2008 .

[154]  P. Williams,et al.  Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients , 1991 .

[155]  J. LaRoche,et al.  Dissolved Organic Nitrogen Hydrolysis Rates in Axenic Cultures of Aureococcus anophagefferens (Pelagophyceae): Comparison with Heterotrophic Bacteria , 2002, Applied and Environmental Microbiology.

[156]  U. Sommer Comparison between steady state and non-steady state competition: experiments with natural phytoplankton , 1985 .

[157]  S. Kranz,et al.  Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes , 2009 .

[158]  J. Goering,et al.  UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY1 , 1967 .

[159]  Kenneth A. Lachlan,et al.  The high cost of complexity in experimental design and data analysis: Type I and type II error rates in multiway ANOVA , 2002 .

[160]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[161]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[162]  C. Heil,et al.  Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico , 2006 .

[163]  Jean-Pierre Gattuso,et al.  Technical Note: Approaches and software tools to investigate the impact of ocean acidification , 2009 .

[164]  John A. Raven,et al.  Oceanic sinks for atmospheric CO2 , 1999 .

[165]  J. Oades,et al.  Comparative organic geochemistries of soils and marine sediments , 1997 .

[166]  H. Ducklow,et al.  Assessing Sources and Ages of Organic Matter Supporting River and Estuarine Bacterial Production : A Multiple-Isotope ( Δ 14 C , δ 13 C , and δ 15 N ) , 2007 .

[167]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[168]  Patrick Kangas,et al.  Mesocosms and ecological engineering , 1996 .