The evolution and function of pattern diversity in snakes

Species in the suborder Serpentes present a powerful model for understanding processes involved in visual signal design. Although vision is generally poor in snakes, they are often both predators and prey of visually oriented species. We examined how ecological and behavioral factors have driven the evolution of snake patterning using a phylogenetic comparative approach. The appearances of 171 species of Australian and North American snakes were classified using a reaction-diffusion model of pattern development, the parameters of which allow parametric quantification of various aspects of coloration. The main findings include associations between plain color and an active hunting strategy, longitudinal stripes and rapid escape speed, blotched patterns with ambush hunting, slow movement and pungent cloacal defense, and spotted patterns with close proximity to cover. Expected associations between bright colors, aggressive behavior, and venom potency were not observed. The mechanisms through which plain and longitudinally striped patterns might support camouflage during movement are discussed. The flicker-fusion hypothesis for transverse striped patterns being perceived as uniform color during movement is evaluated as theoretically possible but unlikely. Snake pattern evolution is generally phylogenetically conservative, but by sampling densely in a wide variety of snake lineages, we have demonstrated that similar pattern phenotypes have evolved repeatedly in response to similar ecological demands.

[1]  William L. Allen,et al.  Analyzing Visual Signals as Visual Scenes , 2013, American journal of primatology.

[2]  Innes C. Cuthill,et al.  Camouflage, detection and identification of moving targets , 2013, Proceedings of the Royal Society B: Biological Sciences.

[3]  P. Gregory,et al.  Can snakes hide in plain view? Chromatic and achromatic crypsis of two colour forms of the Western Terrestrial Garter Snake (Thamnophis elegans) , 2013 .

[4]  John A. Endler,et al.  A framework for analysing colour pattern geometry: adjacent colours , 2012 .

[5]  M. Stevens,et al.  Linking the evolution and form of warning coloration in nature , 2012, Proceedings of the Royal Society B: Biological Sciences.

[6]  M. Forstner,et al.  Predation and the Maintenance of Color Polymorphism in a Habitat Specialist Squamate , 2012, PloS one.

[7]  R. Baddeley,et al.  Dazzle Camouflage Affects Speed Perception , 2011, PloS one.

[8]  Innes C. Cuthill,et al.  Why the leopard got its spots: relating pattern development to ecology in felids , 2011, Proceedings of the Royal Society B: Biological Sciences.

[9]  J. Mappes,et al.  Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers , 2011, Evolutionary Ecology.

[10]  L. Vitt,et al.  The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. , 2011, Molecular phylogenetics and evolution.

[11]  T. J. Morgan,et al.  Quantitative genetics of pigmentation development in 2 populations of the common garter snake, Thamnophis sirtalis. , 2010, The Journal of heredity.

[12]  Paul A. Ferry,et al.  Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land , 2010, Biology Letters.

[13]  N. Tinbergen On aims and methods of Ethology , 2010 .

[14]  R. A. Pyron,et al.  Body size as a primary determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes: Colubridae) , 2009, Journal of evolutionary biology.

[15]  R. A. Pyron,et al.  Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae). , 2009, Molecular phylogenetics and evolution.

[16]  Jasmine A. Nirody,et al.  The mechanics of slithering locomotion , 2009, Proceedings of the National Academy of Sciences.

[17]  Martin Stevens,et al.  Outline and surface disruption in animal camouflage , 2009, Proceedings of the Royal Society B: Biological Sciences.

[18]  E. Hedenström,et al.  Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera , 2008, BMC Evolutionary Biology.

[19]  Caitlin A. Kuczynski,et al.  Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. , 2008, Systematic biology.

[20]  A. Forsman,et al.  Associations of variable coloration with niche breadth and conservation status among Australian reptiles. , 2008, Ecology.

[21]  A. Mori,et al.  Quantitative Evaluation of Individual Snake Coloration by Use of Principal Components Analysis with Variable Selection , 2007 .

[22]  Martin Stevens,et al.  Predator perception and the interrelation between different forms of protective coloration , 2007, Proceedings of the Royal Society B: Biological Sciences.

[23]  J. Pastorini,et al.  A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. , 2007, Molecular phylogenetics and evolution.

[24]  I. Cuthill,et al.  Using digital photography to study animal coloration , 2007 .

[25]  R. Heinsohn,et al.  Life-history traits and ontogenetic colour change in an arboreal tropical python, Morelia viridis , 2006 .

[26]  R. Clark Fixed Videography to Study Predation Behavior of an Ambush Foraging Snake, Crotalus Horridus , 2006, Copeia.

[27]  J. Endler,et al.  Comparing entire colour patterns as birds see them , 2005 .

[28]  J. Mappes,et al.  Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators , 2005 .

[29]  F. Burbrink,et al.  Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. , 2005, Molecular phylogenetics and evolution.

[30]  Douglas A. Creer Correlations between Ontogenetic Change in Color Pattern and Antipredator Behavior in the Racer, Coluber constrictor , 2005 .

[31]  W. Wüster,et al.  Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  J. Endler,et al.  Predator Mixes and the Conspicuousness of Aposematic Signals , 2004, The American Naturalist.

[33]  A. Bouskila,et al.  AMBUSH SITE SELECTION OF A DESERT SNAKE (ECHIS COLORATUS) AT AN OASIS , 2004 .

[34]  R. Clark Timber Rattlesnakes (Crotalus horridus) Use Chemical Cues to Select Ambush Sites , 2004, Journal of Chemical Ecology.

[35]  K. D. Bowen Ontogenetic Changes in the Coloration of the Northern Watersnake, Nerodia sipedon sipedon , 2003 .

[36]  Yoh Iwasa,et al.  Stripes, spots, or reversed spots in two-dimensional Turing systems. , 2003, Journal of theoretical biology.

[37]  T. Sherratt,et al.  The Evolution of Warning Signals as Reliable Indicators of Prey Defense , 2003, The American Naturalist.

[38]  C. H. Ernst,et al.  Snakes of the United States and Canada , 2003 .

[39]  Y. Iwasa,et al.  Origin of directionality in the fish stripe pattern , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[40]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[41]  R. King,et al.  Effects of Body Size and Melanism on the Thermal Biology of Garter Snakes (Thamnophis sirtalis) , 2002, Copeia.

[42]  Yoh Iwasa,et al.  Directionality of stripes formed by anisotropic reaction-diffusion models. , 2002, Journal of theoretical biology.

[43]  J. Jarvis,et al.  Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus) , 2002, Vision Research.

[44]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[45]  Robert C. Stebbins A Field Guide to Western Reptiles and Amphibians: Field marks of all species in western North America, including Baja California , 1998 .

[46]  R. Shine,et al.  Ecological divergence among sympatric colour morphs in blood pythons, Python brongersmai , 1998, Oecologia.

[47]  K. McLauchlan,et al.  PREDATION BY FREE‐RANGING BIRDS ON PARTIAL CORAL SNAKE MIMICS: THE IMPORTANCE OF RING WIDTH AND COLOR , 1997, Evolution; international journal of organic evolution.

[48]  A. Forsman,et al.  SEXUAL DICHROMATISM IN SNAKES : SUPPORT FOR THE FLICKER-FUSION HYPOTHESIS , 1996 .

[49]  S. Spawls,et al.  The Dangerous Snakes of Africa: Natural History: Species Directory: Venoms and Snakebite , 1996 .

[50]  E. Brodie,et al.  Experimental studies of Coral Snake mimicry: generalized avoidance of ringed snake patterns by free-ranging avian predators , 1995 .

[51]  Y. Werner,et al.  THE STRIPED COLOUR PATTERN AND STRIPED/NON‐STRIPED POLYMORPHISM IN SNAKES (REPTILIA: OPHIDIA) * , 1994 .

[52]  R. Shine,et al.  Sexual dichromatism in snakes of the genus Vipera: a review and a new evolutionary hypothesis , 1994 .

[53]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  R. King COLOR‐PATTERN VARIATION IN LAKE ERIE WATER SNAKES: PREDICTION AND MEASUREMENT OF NATURAL SELECTION , 1993, Evolution; international journal of organic evolution.

[55]  R. King Color pattern variation in Lake Erie water snakes : inheritance , 1993 .

[56]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[57]  E. Brodie DIFFERENTIAL AVOIDANCE OF CORAL SNAKE BANDED PATTERNS BY FREE‐RANGING AVIAN PREDATORS IN COSTA RICA , 1993, Evolution; international journal of organic evolution.

[58]  E. Brodie,et al.  CORRELATIONAL SELECTION FOR COLOR PATTERN AND ANTIPREDATOR BEHAVIOR IN THE GARTER SNAKE THAMNOPHIS ORDINOIDES , 1992, Evolution; international journal of organic evolution.

[59]  R. King Lake Erie water snakes revisited: Morph- and age-specific variation in relative crypsis , 1992, Evolutionary Ecology.

[60]  J. Slowinski,et al.  The colouration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae) , 1992 .

[61]  M V Srinivasan,et al.  Camouflage by edge enhancement in animal coloration patterns and its implications for visual mechanisms , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  M R Myerscough,et al.  Pigmentation pattern formation on snakes. , 1991, Journal of theoretical biology.

[63]  J. Endler On the measurement and classification of colour in studies of animal colour patterns , 1990 .

[64]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  E. Brodie,et al.  Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides , 1989, Nature.

[66]  W. Lamar,et al.  Venomous Reptiles of Latin America , 1989 .

[67]  J. Rovamo,et al.  Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: A revision of granit-harper and ferry-porter laws , 1988, Vision Research.

[68]  T. Lacalli,et al.  Theoretical aspects of stripe formation in relation to Drosophila segmentation. , 1988, Development.

[69]  R. King COLOR PATTERN POLYMORPHISM IN THE LAKE ERIE WATER SNAKE, NERODIA SIPEDON INSULARUM , 1987, Evolution; international journal of organic evolution.

[70]  B. Jayne Kinematics of terrestrial snake locomotion , 1986 .

[71]  S. A. Hughes,et al.  Reptiles and Amphibians , 1985 .

[72]  S. Sweet Geographic Variation, Convergent Crypsis and Mimicry in Gopher Snakes (Pituophis melanoleucus) and Western Rattlesnakes (Crotalus viridis) , 1985 .

[73]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[74]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[75]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[76]  J. W. Vincent COLOR PATTERN VARIATION IN CROTALUS LEPIDUS LEPIDUS (VIPERIDAE) IN SOUTHWESTERN TEXAS , 1982 .

[77]  J. Falls,et al.  Thermal biology of the common garter snake Thamnophis sirtalis (L.) , 1979, Oecologia.

[78]  J. Falls,et al.  Thermal biology of the common garter snake Thamnophis sirtalis (L.) , 1979, Oecologia.

[79]  H. Bechtel Color and Pattern in Snakes (Reptilia, Serpentes) , 1978 .

[80]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[81]  F. H. Pough,et al.  Multiple cryptic effects of crossbanded and ringed patterns of snakes , 1976 .

[82]  James F. Jackson,et al.  The Dorsal Pigmentation Pattern of Snakes as an Antipredator Strategy: A Multivariate Approach , 1976, The American Naturalist.

[83]  R. Beatson ENVIRONMENTAL AND GENETICAL CORRELATES OF DISRUPTIVE COLORATION IN THE WATER SNAKE, NATRIX S. SIPEDON , 1976, Evolution; international journal of organic evolution.

[84]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[85]  D. H. Kelly Spatio-temporal frequency characteristics of color-vision mechanisms* , 1974 .

[86]  P. Kay,et al.  Basic Color Terms: Their Universality and Evolution , 1973 .

[87]  Roger Conant,et al.  A Field Guide to Reptiles and Amphibians , 1959 .

[88]  P. Ehrlich,et al.  Natural Selection in Water Snakes (Natrix sipedon L.) on Islands in Lake Erie , 1958 .

[89]  B. Brattstrom THE CORAL SNAKE “MIMIC” PROBLEM AND PROTECTIVE COLORATION , 1955 .

[90]  A. M. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[91]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[92]  W. Mosauer,et al.  How Fast Can Snakes Travel , 1935 .

[93]  Ragnar Granit,et al.  COMPARATIVE STUDIES ON THE PERIPHERAL AND CENTRAL RETINA , 1930 .

[94]  Ragnar Granit,et al.  COMPARATIVE STUDIES ON THE PERIPHERAL AND CENTRAL RETINA: II. Synaptic Reactions in the Eye , 1930 .

[95]  R. Freckleton,et al.  Model averaging, missing data and multiple imputation: a case study for behavioural ecology , 2010, Behavioral Ecology and Sociobiology.

[96]  D. Gower,et al.  Dissecting the major American snake radiation: A molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). , 2010, Comptes rendus biologies.

[97]  R. Murphy,et al.  Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa , 2009 .

[98]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[99]  Graziano Pesole,et al.  BMC Evolutionary Biology BioMed Central , 2007 .

[100]  G. Ruxton,et al.  Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry , 2004 .

[101]  Steve K. Wilson,et al.  A Complete Guide to Reptiles of Australia , 2003 .

[102]  J. Rossi Snakes of the United States and Canada , 2003 .

[103]  Robert Dillon,et al.  Pattern formation in generalized Turing systems , 1994 .

[104]  R. Shine Australian Snakes: A Natural History , 1991 .

[105]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[106]  H. Meinhardt Models of biological pattern formation , 1982 .

[107]  J. Endler A Predator’s View of Animal Color Patterns , 1978 .

[108]  H. Cogger Reptiles and Amphibians of Australia , 1975 .

[109]  R. Conant,et al.  A new subspecies of water snake from islands in Lake Erie , 1937 .