Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures

A new solver featuring time-space adaptation and error control has been recently introduced to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume adaptive multiresolution and high order time integrators with specific stability properties for each operator, this strategy yields high computational efficiency for large multidimensional computations on standard architectures such as powerful workstations. However, the data structure of the original implementation, based on trees of pointers, provides limited opportunities for efficiency enhancements, while posing serious challenges in terms of parallel programming and load balancing. The present contribution proposes a new implementation of the whole set of numerical methods including Radau5 and ROCK4, relying on a fully different data structure together with the use of a specific library, TBB, for shared-memory, task-based parallelism with work-stealing. The performance of our implementation is assessed in a series of test-cases of increasing difficulty in two and three dimensions on multi-core and many-core architectures, demonstrating high scalability.

[1]  Marc Massot,et al.  Simulation of human ischemic stroke in realistic 3D geometry , 2010, Commun. Nonlinear Sci. Numer. Simul..

[2]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[3]  Rupak Biswas,et al.  Parallel Load Balancing for Adaptive Unstructured Meshes , 1998 .

[4]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[5]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[6]  Marc Massot,et al.  New Resolution Strategy for Multi-scale Reaction Waves using Time Operator Splitting and Space Adaptive Multiresolution: Application to Human Ischemic Stroke , 2011 .

[7]  Dinshaw S. Balsara,et al.  Highly parallel structured adaptive mesh refinement using parallel language-based approaches , 2001, Parallel Comput..

[8]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[9]  Marc Massot,et al.  Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays , 2016 .

[10]  James M. Kang,et al.  Space-Filling Curves , 2017, Encyclopedia of GIS.

[11]  Christian Tenaud,et al.  TUTORIALS ON ADAPTIVE MULTIRESOLUTION FOR MESH REFINEMENT APPLIED TO FLUID DYNAMICS AND REACTIVE MEDIA PROBLEMS. , 2011 .

[12]  Miriam Mehl,et al.  Peano - A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids , 2011, SIAM J. Sci. Comput..

[13]  Bradley C. Kuszmaul,et al.  Cilk: an efficient multithreaded runtime system , 1995, PPOPP '95.

[14]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[15]  Marc Massot,et al.  Adaptive time splitting method for multi-scale evolutionary partial differential equations , 2011, 1104.3697.

[16]  Assyr Abdulle,et al.  Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..

[17]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[18]  Tobias Weinzierl,et al.  A Blocking Strategy on Multicore Architectures for Dynamically Adaptive PDE Solvers , 2009, PPAM.

[19]  Thierry Dumont,et al.  Numerical simulation of a stroke: computational problems and methodology. , 2008, Progress in biophysics and molecular biology.

[20]  Scott B. Baden,et al.  Structured Adaptive Mesh Refinement (Samr) Grid Methods , 1999 .

[21]  Hua Ji,et al.  A new adaptive mesh refinement data structure with an application to detonation , 2010, J. Comput. Phys..

[22]  Wolfgang Dahmen,et al.  Numerical simulation of cooling gas injection using adaptive multiscale techniques , 2010 .

[23]  James Reinders,et al.  Intel® threading building blocks , 2008 .

[24]  Jean-Pierre Boissel,et al.  A mathematical model of ion movements in grey matter during a stroke. , 2006, Journal of theoretical biology.

[25]  Diego Rossinelli,et al.  Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems , 2009, Euro-Par.

[26]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[27]  Kolja Brix,et al.  Parallelisation of Multiscale-Based Grid Adaptation using Space-Filling Curves , 2009 .

[28]  Bruno Raffin,et al.  XKaapi: A Runtime System for Data-Flow Task Programming on Heterogeneous Architectures , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[29]  Marc Massot,et al.  New Resolution Strategy for Multiscale Reaction Waves using Time Operator Splitting, Space Adaptive Multiresolution, and Dedicated High Order Implicit/Explicit Time Integrators , 2012, SIAM J. Sci. Comput..

[30]  H. Sagan Space-filling curves , 1994 .

[31]  William Y. Crutchfield,et al.  Object-Oriented Implementation of Adaptive Mesh Refinement Algorithms , 1993, Sci. Program..

[32]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[33]  Marc Massot,et al.  Operator splitting for nonlinear reaction-diffusion systems with an entropic structure : singular perturbation and order reduction , 2004, Numerische Mathematik.

[34]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[35]  Jacques Periaux,et al.  Wavelet methods in computational fluid dynamics , 1993 .

[36]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[37]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[38]  Sidi Mahmoud Kaber,et al.  Fully adaptive multiresolution nite volume s hemes for onservation , 2000 .

[39]  Samuel Williams,et al.  Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.

[40]  Marc Massot,et al.  A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations , 2013, J. Comput. Phys..

[41]  Kolja Brix,et al.  Adaptive Multiresolution Methods: Practical issues on Data Structures, Implementation and Parallelization* , 2011 .

[42]  Hans-Joachim Bungartz,et al.  Cluster Optimization and Parallelization of Simulations with Dynamically Adaptive Grids , 2013, Euro-Par.

[43]  G. M. Makhviladze,et al.  The Mathematical Theory of Combustion and Explosions , 2011 .

[44]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[45]  Marc Massot,et al.  A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations , 2011, J. Comput. Phys..

[46]  Alexandru Fikl,et al.  Experimenting with the p4est library for AMR simulations of two-phase flows , 2016, ArXiv.

[47]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[48]  Stéphane Descombes,et al.  On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..

[49]  John B. Bell,et al.  Parallelization of structured, hierarchical adaptive mesh refinement algorithms , 2000 .

[50]  Leonid Oliker,et al.  PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes , 1998, J. Parallel Distributed Comput..

[51]  Scott R. Kohn,et al.  Large scale parallel structured AMR calculations using the SAMRAI framework , 2001, SC.

[52]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[53]  Marc Massot,et al.  Time–space adaptive numerical methods for the simulation of combustion fronts , 2013 .

[54]  Robert D. Blumofe,et al.  Scheduling multithreaded computations by work stealing , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[55]  Marc Massot,et al.  ASYMPTOTIC STABILITY OF EQUILIBRIUM STATES FOR MULTICOMPONENT REACTIVE FLOWS , 1998 .

[56]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[57]  Andrew A. Chien,et al.  The future of microprocessors , 2011, Commun. ACM.

[58]  Diego Rossinelli,et al.  High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions , 2010, J. Comput. Phys..

[59]  Christopher J. Forster Parallel wavelet-adaptive direct numerical simulation of multiphase flows with phase-change , 2016 .

[60]  Diego Rossinelli,et al.  Wavelet‐adaptive solvers on multi‐core architectures for the simulation of complex systems , 2011, Concurr. Comput. Pract. Exp..

[61]  Peter Gray,et al.  Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics , 1990 .

[62]  Rainer Grauer,et al.  Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws , 2005, Parallel Comput..

[63]  Ralf Deiterding,et al.  Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application , 2011 .

[64]  Max Duarte,et al.  Adaptive numerical methods in time and space for the simulation of multi-scale reaction fronts. (Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace) , 2011 .

[65]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[66]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[67]  Eric Brown-Dymkoski,et al.  Parallel adaptive wavelet collocation method for PDEs , 2011, J. Comput. Phys..

[68]  Yu. M. Romanovsky,et al.  Chemical Oscillations and Instabilities. Non-linear Chemical Kinetics , 1995 .

[69]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[70]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[71]  Richard M. Noyes,et al.  Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations , 1972 .

[72]  Frédérique Laurent,et al.  Analysis of Operator Splitting in the Nonasymptotic Regime for Nonlinear Reaction-Diffusion Equations. Application to the Dynamics of Premixed Flames , 2014, SIAM J. Numer. Anal..