Ultra–large Field-of-view Two-photon Microscopy References and Links
暂无分享,去创建一个
David Kleinfeld | Philbert S Tsai | Chris B Schaffer | Celine Mateo | Matthew E. Anderson | Jeffrey J Field | D. Kleinfeld | T. Wardill | M. Orger | E. Schreiter | L. Looger | H. Karten | K. Deisseroth | F. Helmchen | M. Schnitzer | I. Goshen | J. Driscoll | J. Kaufhold | H. Mansvelder | J. Savall | P. Blinder | P. Tsai | P. Knutsen | D. Kobat | C. Schaffer | N. Horton | M. Kudenov | Céline Matéo | J. Field | Matthew E Anderson | J. H. Duyn | S. Renninger | D. S. Kim | J. Strickler | W. Denk | F. Zhang | L. Fenno | S. Pulver | B. Migliori | K. Akassoglou | B. Grewe | L. Kitch | S. S. Segal | A. Nayak | P. P. Mitra | F. Wise | W. Webb | V. Gradinaru | D. W. Tank | C. Mateo | V. Jayaraman | A. Shih | J. H. Lee | K. Uğurbil | C. Xu | K. Svoboda | J. Palva | A. Groisman | A. Baohan | J. Drew | D. Davalos | H. Kim | A Y Shih | P. Drew | N. Nishimura | P S Tsai | B. Friedman | D. Lyden | Kleinfeld | C. Ramakrishnan | X. Hu | H. Kamiya | H. Yoshikawa | C. G. Clark | Y. D. A. Leopold | N. K. Murayama | Logothetis | S. Ogawa | T.-M Lee | P. Glynn | M. M. D. E. Fox | Raichle | S. Palva | M L Schölvinck | A. Maier | F. Q. Ye | D. A. Leopold | R. Durand | K Svoboda | J Lecoq | D. Vucinic | J. Z. Li | A Negrean | T W Chen | Y. Sun | R. A. Kerr | K. Campbell | T. Kim | Z. Kam | M V R K Murty | K. Nomura | K. Miyashiro | Tashiro | K. Wang | G G Emerson | I Valmianski | D. M. Matthews | Y. Freund | J N Stirman | I. T. Smith | S. L. Smith
[1] M. Schmid. Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .
[2] N. Logothetis,et al. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.
[3] T Nomura,et al. High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials. , 2000, Applied optics.
[4] David Kleinfeld,et al. Chronic optical access through a polished and reinforced thinned skull. , 2010, Nature methods.
[5] W. Denk,et al. Deep tissue two-photon microscopy , 2005, Nature Methods.
[6] Warren J. Smith. Practical Optical System Layout: And Use of Stock Lenses , 1997 .
[7] Tyson N. Kim,et al. Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane , 2007 .
[8] G. G. Emerson,et al. Electrical Coupling Between Endothelial Cells and Smooth Muscle Cells in Hamster Feed Arteries: Role in Vasomotor Control , 2000, Circulation research.
[9] Stefan R. Pulver,et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.
[10] Y. Freund,et al. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. , 2010, Journal of neurophysiology.
[11] D. Kleinfeld,et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.
[12] W. Denk,et al. Two-photon laser scanning fluorescence microscopy. , 1990, Science.
[13] P. Mitra,et al. The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging , 1997, Magnetic resonance in medicine.
[14] David Kleinfeld,et al. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. , 2012, Journal of visualized experiments : JoVE.
[15] Huibert D Mansvelder,et al. Optimal lens design and use in laser-scanning microscopy. , 2014, Biomedical optics express.
[16] D. Kleinfeld,et al. Two-Photon Microscopy as a Tool to Study Blood Flow and Neurovascular Coupling in the Rodent Brain , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[17] Jeffrey N. Stirman,et al. Wide field-of-view, twin-region two-photon imaging across extended cortical networks , 2014 .
[18] W. J. Bates. A wavefront shearing interferometer , 1947 .
[19] S S Segal,et al. Flow control among microvessels coordinated by intercellular conduction. , 1986, Science.
[20] D. Kleinfeld,et al. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity , 2011, Proceedings of the National Academy of Sciences.
[21] S. Ogawa,et al. Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.
[22] M. Fox,et al. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.
[23] Benjamin F. Grewe,et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).
[24] M. V. R. K. Murty,et al. The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source. , 1964 .
[25] D. Kleinfeld,et al. Correlations of Neuronal and Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and Vessels , 2009, The Journal of Neuroscience.
[26] M. Schölvinck,et al. Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.
[27] D. Kleinfeld,et al. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[28] Frank W. Wise,et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, CLEO 2012.
[29] Dae-Shik Kim,et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.
[30] J. Matias Palva,et al. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series , 2012, NeuroImage.