Metagenomics: DNA sequencing of environmental samples

Although genomics has classically focused on pure, easy-to-obtain samples, such as microbes that grow readily in culture or large animals and plants, these organisms represent only a fraction of the living or once-living organisms of interest. Many species are difficult to study in isolation because they fail to grow in laboratory culture, depend on other organisms for critical processes, or have become extinct. Methods that are based on DNA sequencing circumvent these obstacles, as DNA can be isolated directly from living or dead cells in various contexts. Such methods have led to the emergence of a new field, which is referred to as metagenomics.

[1]  M. Nóbrega,et al.  Comparative genomics at the vertebrate extremes , 2004, Nature Reviews Genetics.

[2]  J. Shendure,et al.  Advanced sequencing technologies: methods and goals , 2004, Nature Reviews Genetics.

[3]  D. Wong,et al.  In situ and non-invasive detection of specific bacterial species in oral biofilms using fluorescently labeled monoclonal antibodies. , 2005, Journal of microbiological methods.

[4]  G. Firrao,et al.  PCR-mediated whole genome amplification of phytoplasmas. , 2004, Journal of microbiological methods.

[5]  Trevor L Hawkins,et al.  Whole genome amplification--applications and advances. , 2002, Current opinion in biotechnology.

[6]  D. Relman,et al.  The meaning and impact of the human genome sequence for microbiology. , 2001, Trends in microbiology.

[7]  Natalia Ivanova,et al.  The ERGOTM genome analysis and discovery system , 2003, Nucleic Acids Res..

[8]  B. Barrell,et al.  Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei , 2003, The Lancet.

[9]  S. Salzberg,et al.  Serendipitous discovery of Wolbachia genomes in multiple Drosophila species , 2005, Genome Biology.

[10]  Maynard V. Olson,et al.  Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[11]  L. Aravind,et al.  Comparative Genomic Analysis of Archaeal Genotypic Variants in a Single Population and in Two Different Oceanic Provinces , 2002, Applied and Environmental Microbiology.

[12]  R. Ward,et al.  Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution , 2001, Nature.

[13]  F. Michel,et al.  Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. , 2002, Journal of microbiological methods.

[14]  Natalia N. Ivanova,et al.  The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode , 2005, PLoS biology.

[15]  J. Claverie,et al.  For Personal Use. Only Reproduce with Permission from the Lancet. Genome-based Design of a Cell-free Culture Medium for Tropheryma Whipplei , 2022 .

[16]  Frank Oliver Glöckner,et al.  TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences , 2004, BMC Bioinformatics.

[17]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[18]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[19]  Folker Meyer,et al.  Development of joint application strategies for two microbial gene finders , 2004, Bioinform..

[20]  Hiroyuki Ogata,et al.  Metagrowth: a new resource for the building of metabolic hypotheses in microbiology , 2004, Nucleic Acids Res..

[21]  Jacques Meyer Miraculous catch of iron–sulfur protein sequences in the Sargasso Sea , 2004, FEBS letters.

[22]  M. Dumont,et al.  Stable isotope probing — linking microbial identity to function , 2005, Nature Reviews Microbiology.

[23]  Jillian F. Banfield,et al.  Community genomics in microbial ecology and evolution , 2005, Nature Reviews Microbiology.

[24]  Svante Pääbo,et al.  Evidence for Reproductive Isolation between Cave Bear Populations , 2004, Current Biology.

[25]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Hugenholtz Exploring prokaryotic diversity in the genomic era , 2002, Genome Biology.

[27]  D Barrie Johnson,et al.  The microbiology of acidic mine waters. , 2003, Research in microbiology.

[28]  Oded Béjà,et al.  Different SAR86 subgroups harbour divergent proteorhodopsins. , 2004, Environmental microbiology.

[29]  C. Fenselau,et al.  Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. , 2001, Analytical chemistry.

[30]  S. Giovannoni,et al.  Genetic diversity in Sargasso Sea bacterioplankton , 1990, Nature.

[31]  Yu-Chie Chen,et al.  Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. , 2005, Analytical chemistry.

[32]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[33]  C. Claudel-Renard,et al.  Enzyme-specific profiles for genome annotation: PRIAM. , 2003, Nucleic acids research.

[34]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[35]  B. Andresen,et al.  Genomic analysis of uncultured marine viral communities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Pääbo,et al.  Nuclear DNA sequences from late Pleistocene megafauna. , 1999, Molecular biology and evolution.

[37]  J. Chapman,et al.  Isothermal strand-displacement amplification applications for high-throughput genomics. , 2002, Genomics.

[38]  富野 康日己,et al.  Annual review 腎臓 , 1987 .

[39]  Jürgen Eck,et al.  Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics , 2003, Molecular microbiology.

[40]  E. Delong,et al.  Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing , 1991, Journal of bacteriology.

[41]  H. Barnes Oceanography and marine biology : an annual review , 1986 .

[42]  R. Colwell,et al.  Simple, rapid method for direct isolation of nucleic acids from aquatic environments , 1989, Applied and environmental microbiology.

[43]  Jo Handelsman,et al.  A Census of rRNA Genes and Linked Genomic Sequences within a Soil Metagenomic Library , 2003, Applied and Environmental Microbiology.

[44]  F. Rodríguez-Valera,et al.  Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. , 2004, Environmental microbiology.

[45]  Sallie W. Chisholm,et al.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences , 2002, Applied and Environmental Microbiology.

[46]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[47]  N. Pace,et al.  Analysis of Hydrothermal Vent-Associated Symbionts by Ribosomal RNA Sequences , 1984, Science.

[48]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[49]  E. Delong,et al.  Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. , 2001, Environmental microbiology.

[50]  Edward M. Rubin,et al.  Genomic Sequencing of Pleistocene Cave Bears , 2005, Science.

[51]  J. Kilbane,et al.  New method to characterize microbial diversity using flow cytometry , 2005, Journal of Industrial Microbiology and Biotechnology.

[52]  L. Koski,et al.  The Closest BLAST Hit Is Often Not the Nearest Neighbor , 2001, Journal of Molecular Evolution.

[53]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[54]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[55]  Chanathip Pharino,et al.  Genotypic Diversity Within a Natural Coastal Bacterioplankton Population , 2005, Science.

[56]  C. Sensen,et al.  First insight into the genome of an uncultivated crenarchaeote from soil. , 2002, Environmental microbiology.

[57]  Daniel Rokhsar,et al.  Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics , 2004, Science.

[58]  J. Tiedje,et al.  Characterization of the Dominant and Rare Members of a Young Hawaiian Soil Bacterial Community with Small-Subunit Ribosomal DNA Amplified from DNA Fractionated on the Basis of Its Guanine and Cytosine Composition , 1998, Applied and Environmental Microbiology.

[59]  T. E. Cloete,et al.  Molecular Techniques for Determining Microbial Diversity and Community Structure in Natural Environments , 2000, Critical reviews in microbiology.

[60]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[61]  Y. Kwon,et al.  Improved efficacy of whole genome amplification from bacterial cells. , 2004, BioTechniques.

[62]  N. Tuross,et al.  Ancient DNA analysis of human populations. , 2000, American journal of physical anthropology.

[63]  E. Wellington,et al.  Isolation of high molecular weight DNA from soil for cloning into BAC vectors. , 2003, FEMS microbiology letters.

[64]  A. McDonald,et al.  Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. , 2005, Gene.

[65]  Hidemi Watanabe,et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia , 2002, Nature Genetics.

[66]  Rudolf Amann,et al.  Flow Sorting of Marine Bacterioplankton after Fluorescence In Situ Hybridization , 2004, Applied and Environmental Microbiology.

[67]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[68]  G. Muyzer,et al.  A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. , 2001, Cytometry.

[69]  E. Boyle,et al.  Phosphate depletion in the western North Atlantic Ocean. , 2000, Science.

[70]  E. Delong,et al.  Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon , 1996, Journal of bacteriology.

[71]  N. Pace,et al.  Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences , 1985, Applied and environmental microbiology.

[72]  B. Rodés,et al.  New Tests for Syphilis: Rational Design of a PCR Method for Detection of Treponema pallidum in Clinical Specimens Using Unique Regions of the DNA Polymerase I Gene , 2001, Journal of Clinical Microbiology.

[73]  J. Hollibaugh,et al.  Chitinase Gene Sequences Retrieved from Diverse Aquatic Habitats Reveal Environment-Specific Distributions , 2004, Applied and Environmental Microbiology.

[74]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[75]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[76]  E. Kirkness,et al.  The Dog Genome: Survey Sequencing and Comparative Analysis , 2003, Science.

[77]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[78]  J. Strap,et al.  Diversity of Oxygenase Genes from Methane- and Ammonia-Oxidizing Bacteria in the Eastern Snake River Plain Aquifer , 2005, Applied and Environmental Microbiology.

[79]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[80]  E. G. Lemos,et al.  Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. , 2003, FEMS microbiology letters.

[81]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[82]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[84]  Wei Wei,et al.  Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma , 2004, Nature Genetics.

[85]  S. Pääbo,et al.  Nuclear Gene Sequences from a Late Pleistocene Sloth Coprolite , 2003, Current Biology.

[86]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[87]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  U. Göbel,et al.  Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. , 1997, FEMS microbiology reviews.

[89]  Michael Wagner,et al.  Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm , 2001, Nature.

[90]  P. Salamon,et al.  Metagenomic Analyses of an Uncultured Viral Community from Human Feces , 2003, Journal of bacteriology.

[91]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[92]  Edward F. DeLong,et al.  Microbial community genomics in the ocean , 2005, Nature Reviews Microbiology.

[93]  A. Baco,et al.  ECOLOGY OF WHALE FALLS AT THE DEEP-SEA FLOOR , 2003 .

[94]  D. Raoult,et al.  Molecular genetic methods for the diagnosis of fastidious microorganisms , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.