A travel guide to the dark matter annihilation signal

We provide a ``Baedecker'' or travel guide to the directions on the sky where the dark matter annihilation signal may be expected. We calculate the flux of high energy gamma-rays from annihilation of neutralino dark matter in the centre of the Milky Way and the three nearest dwarf spheroidals (Sagittarius, Draco and Canis Major), using realistic models of the dark matter distribution. Other investigators have used cusped dark halo profiles (such as the Navarro-Frenk-White) to claim a significant signal. This ignores the substantial astrophysical evidence that the Milky Way is not dark-matter dominated in the inner regions. We show that the annihilation signal from the Galactic Centre falls by two orders of magnitude on substituting a cored dark matter density profile for a cusped one. The present and future generation of high energy gamma-ray detectors, whether atmospheric Cerenkov telescopes or space missions like GLAST, lack the sensitivity to detect any of the monochromatic gamma-ray annihilation lines. The continuum gamma-ray signal above 1 GeV and above 50 GeV may however be detectable either from the dwarf spheroidals or from the Milky Way itself. If the density profiles of the dwarf spheroidals are cusped, then the best prospects are for detecting Sagittarius and Canis Major. However, if the dwarf spheroidals have milder, cored profiles, then the annihilation signal is not detectable. For GLAST, an attractive strategy is to exploit the wide field of view and observe the Milky Way at medium latitudes, as suggested by Stoehr et al. This is reasonably robust against changes in the density profile.

[1]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[2]  N. Evans The power-law galaxies , 1994 .

[3]  Mark I. Wilkinson,et al.  First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal , 2001 .

[4]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2002 .

[5]  Joseph Silk,et al.  Dark matter annihilation at the galactic center , 1999 .

[6]  Malcolm S. Longair,et al.  High energy astrophysics: The contents of the Universe – the grand design , 1981 .

[7]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[8]  The dark matter problem in disc galaxies , 2000, astro-ph/0003199.

[9]  N. W. Evans,et al.  Dark matter in dwarf spheroidals - I. Models , 2002 .

[10]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[11]  The clumpiness of cold dark matter: implications for the annihilation signal , 2002, astro-ph/0207299.

[12]  M. Douspis,et al.  An alternative to the cosmological 'concordance model' , 2003, astro-ph/0304237.

[13]  M. Bellazzini,et al.  A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion on to the Milky Way , 2003, astro-ph/0311010.

[14]  D. Macomb,et al.  Point Sources of GeV Gamma Rays , 1997 .

[15]  Mark I. Wilkinson,et al.  A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy , 2003, astro-ph/0304093.

[16]  Nicholas B. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002 .

[17]  S. Digel,et al.  EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane , 1997 .

[18]  Helmuth Spieler,et al.  Review of Particle Physics, 2008-2009 , 2000 .

[19]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[20]  Dark matter spikes and annihilation radiation from the galactic center. , 2002, Physical review letters.

[21]  J. Binney,et al.  Cuspy dark matter haloes and the Galaxy , 2001, astro-ph/0108505.

[22]  Hayes,et al.  Review of particle properties. , 1978, Physical review. D, Particles and fields.

[23]  The present and future mass of the Milky Way halo , 1999, astro-ph/9906197.

[24]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[25]  L. Bergstrom,et al.  Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo , 1998 .

[26]  Generalized analysis of the direct weakly interacting massive particle searches , 2003, hep-ph/0307185.

[27]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[28]  N. Evans Simple galaxy models with massive haloes , 1993 .

[29]  Particle dark matter constraints from the Draco dwarf galaxy , 2002, astro-ph/0203242.

[30]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[31]  DYNAMICAL FRICTION AND THE DISTRIBUTION OF DARK MATTER IN BARRED GALAXIES , 1997, astro-ph/9710039.

[32]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[33]  et al,et al.  EGRET Observations of the Extragalactic Gamma-Ray Emission , 1997 .

[34]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[35]  P. Salati,et al.  Detection of neutralino annihilation photons from external galaxies , 1999, astro-ph/9909112.

[36]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[37]  Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo , 2000, astro-ph/0010056.

[38]  Felix Aharonian,et al.  The potential of the ground based arrays of imaging atmospheric Cherenkov telescopes. II. Gamma ray flux sensitivities , 1997 .

[39]  N. Evans,et al.  Erratum: “A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy” (ApJ, 588, L21 [2003]) , 2003 .