An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data

[1]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[2]  S. Running,et al.  A continental phenology model for monitoring vegetation responses to interannual climatic variability , 1997 .

[3]  Heikki Hänninen,et al.  Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). , 1998, Tree physiology.

[4]  Jing Chen,et al.  Impact of variable atmospheric water vapor content on AVHRR data corrections over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  D. Villegas,et al.  Biomass Accumulation and Main Stem Elongation of Durum Wheat Grown under Mediterranean Conditions , 2001 .

[6]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Zhao-Liang Li,et al.  Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data , 2002 .

[8]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[9]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[10]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[11]  K. Price,et al.  Response of seasonal vegetation development to climatic variations in eastern central Asia , 2003 .

[12]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[13]  J. Schaber,et al.  Responses of spring phenology to climate change , 2004 .

[14]  J. Peñuelas,et al.  European phenological response to climate change matches the warming pattern , 2006 .

[15]  P. Ciais,et al.  Variations in satellite‐derived phenology in China's temperate vegetation , 2006 .

[16]  基于NOAA/AVHRR NDVI 监测中国北方典型草原的生长季及变化 , 2006 .

[17]  Mark A. Friedl,et al.  Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements , 2006 .

[18]  J. O'keefe,et al.  Phenology of a northern hardwood forest canopy , 2006 .

[19]  Shi Peijun Assessment of Grassland Ecological Restoration Project in Xilin Gol Grassland , 2007 .

[20]  J. Mustard,et al.  Cross-scalar satellite phenology from ground, Landsat, and MODIS data , 2007 .

[21]  Christopher B. Field,et al.  Changing feedbacks in the climate–biosphere system , 2008 .

[22]  P. Ciais,et al.  Net carbon dioxide losses of northern ecosystems in response to autumn warming , 2008, Nature.

[23]  D. Hollinger,et al.  Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. , 2009, Tree physiology.

[24]  Chang-Hoi Ho,et al.  Increase in vegetation greenness and decrease in springtime warming over east Asia , 2009 .

[25]  Mark A. Friedl,et al.  Sensitivity of vegetation phenology detection to the temporal resolution of satellite data , 2009 .

[26]  M. Schaepman,et al.  Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 , 2009 .

[27]  Andrew D. Richardson,et al.  Phenological Differences Between Understory and Overstory: A Case Study Using the Long-Term Harvard Forest Records , 2009 .

[28]  M. Friedl,et al.  Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product , 2010 .

[29]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[30]  Eike Luedeling,et al.  Winter and spring warming result in delayed spring phenology on the Tibetan Plateau , 2010, Proceedings of the National Academy of Sciences.

[31]  Yanhong Tang,et al.  Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau , 2011 .

[32]  S. Piao,et al.  Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis , 2012 .

[33]  S. Malyshev,et al.  Uncertainties in terrestrial carbon budgets related to spring phenology , 2012 .

[34]  Yanhong Tang,et al.  Specification of thermal growing season in temperate China from 1960 to 2009 , 2012, Climatic Change.

[35]  A. Richardson,et al.  Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forests , 2012 .

[36]  Wenquan Zhu,et al.  Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006 , 2012 .

[37]  Murugesu Sivapalan,et al.  Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach , 2012 .

[38]  Tomoaki Miura,et al.  An initial assessment of Suomi NPP VIIRS vegetation index EDR , 2013 .

[39]  Effects of drought on grassland turning green period in Inner Mongolia , 2013 .

[40]  Jinwei Dong,et al.  Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011 , 2013, Proceedings of the National Academy of Sciences.

[41]  Shirong Liu,et al.  Inconsistent NDVI trends from AVHRR, MODIS, and SPOT sensors in the Tibetan Plateau , 2013, 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[42]  Xiaolin Zhu,et al.  Two important indicators with potential to identify Caragana microphylla in xilin gol grassland from temporal MODIS data , 2013 .

[43]  Shilong Piao,et al.  Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau , 2014 .

[44]  John L. Innes,et al.  Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011 , 2014 .