Using Local Geometry to Build 3D Sulcal Models

This paper presents a series of 3D statistical models of the cortical sulci. They are built from points located automatically over the sulcal fissures, and corresponded automatically using variants on the Iterative Closest Point algorithm. The models are progressively improved by adding in more and more structural and configural information, and the final results are consistent with findings from other anatomical studies. The models can be used to locate and label anatomical features automatically in 3D head images for analysis, visualisation, classification, and normalisation.

[1]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[2]  Laurent D. Cohen,et al.  Segmentation of complex 3-D medical objects, a challenge and a requirement for computer assisted surgery planning and performing , 1994 .

[3]  U Tiede,et al.  3-D segmentation of MR images of the head for 3-D display. , 1990, IEEE transactions on medical imaging.

[4]  R A Robb,et al.  Interactive display and analysis of 3-D medical images. , 1989, IEEE transactions on medical imaging.

[5]  Marinette Revenu,et al.  Morphometry and Identification of Brain Sulci on Three-Dimensional MR Images , 1995 .

[6]  Nicholas Ayache,et al.  A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: application to a Sku , 1995 .

[7]  Guido Gerig,et al.  Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models , 1996, Medical Image Anal..

[8]  Jean-Philippe Thirion,et al.  Non-rigid matching using demons , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[10]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[11]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[12]  A. Galaburda,et al.  Human Cerebral Cortex: Localization, Parcellation, and Morphometry with Magnetic Resonance Imaging , 1992, Journal of Cognitive Neuroscience.

[13]  Stephen J. Riederer,et al.  Medical imaging [6] , 1995 .

[14]  Alex Pentland,et al.  Shape analysis of brain structures using physical and experimental modes , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Michael S. Gazzaniga,et al.  Surface Area of Human Cerebral Cortex and Its Gross Morphological Subdivisions: In Vivo Measurements in Monozygotic Twins Suggest Differential Hemisphere Effects of Genetic Factors , 1995, Journal of Cognitive Neuroscience.

[16]  D. Louis Collins,et al.  Automatic Identification of Cortical Sulci Using a 3D Probabilistic Atlas , 1998, MICCAI.

[17]  D R Fish,et al.  The demonstration of gyral abnormalities in patients with cryptogenic partial epilepsy using three-dimensional MRI. , 1996, Archives of neurology.

[18]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[19]  Gabriele Lohmann,et al.  Automatic Detection and Labelling of the Human Cortical Folds in Magnetic Resonance Data Sets , 1998, ECCV.

[20]  Godfrey D. Pearlson,et al.  Asymmetry of the planum temporale: methodological considerations and clinical associations , 1995, Psychiatry Research: Neuroimaging.

[21]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Attila Kuba,et al.  A Thinning Algorithm to Extract Medial Lines from 3D Medical Images , 1997, IPMI.

[24]  Jean-Philippe Thirion,et al.  Fast Non-Rigid Matching of 3D Medical Images , 1995 .

[25]  Timothy F. Cootes,et al.  An Automatic Face Identification System Using Flexible Appearance Models , 1994, BMVC.

[26]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[27]  T. Greitz,et al.  A computerized brain atlas: construction, anatomical content, and some applications. , 1991, Journal of computer assisted tomography.

[28]  Nicholas Ayache,et al.  Application of an Automatically Built 3D Morphometric Brain Atlas: Study of Cerebral Ventricle Shape , 1996, VBC.

[29]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[30]  Christopher J. Taylor,et al.  3D point distribution models of the cortical sulci , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[31]  Michael S. Gazzaniga,et al.  Cortical surface modeling reveals gross morphometric correlates of individual differences , 1995 .

[32]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[33]  Christopher J. Taylor,et al.  Automatic Landmark Generation for Point Distribution Models , 1994, BMVC.

[34]  山浦 晶 Atlas of the Cerebral Sulci, Michio Ono, Stefan Kubik and Chad D. Abernathey著, Georg Thieme Verlag, Stuttgart, New York 1990(らいぶらりい) , 1992 .

[35]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[36]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[37]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Timothy F. Cootes,et al.  Automatic face identification system using flexible appearance models , 1995, Image Vis. Comput..

[39]  Christopher J. Taylor,et al.  Model-Based Interpretation of 3D Medical Images , 1993, BMVC.

[40]  Zhengyou Zhang On Local Matching of Free-Form Curves , 1992 .

[41]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.